Document Type : Research Article
Authors
Mechanical Engineering Department, Center of Excellence in Energy Conversion (CEEC), Sharif University of Technology, Tehran, Iran
Abstract
Highlights
[1] A. Afonso, L. Ferrás, J. Nóbrega, M. Alves, F. Pinho, Pressure-driven electrokinetic slip flows of viscoelastic fluids in hydrophobic microchannels, Microfluidics and nanofluidics, 16(6) (2014) 1131-1142.
[2] F. Brochard, P. De Gennes, Shear-dependent slippage at a polymer/solid interface, Langmuir, 8(12) (1992) 3033- 3037.
[3] Y. Inn, S.-Q. Wang, Hydrodynamic slip: Polymer adsorption and desorption at melt/solid interfaces, Phys. Rev. Lett., 76(3) (1996) 467.
[4] K. Migler, H. Hervet, L. Leger, Slip transition of a polymer melt under shear stress, Phys. Rev. Lett., 70(3) (1993) 287.
[5] V. Marry, J.-F. Dufrêche, M. Jardat, P. Turq, Equilibrium and electrokinetic phenomena in charged porous media from microscopic and mesoscopic models: electro-osmosis in montmorillonite, Molecular Physics, 101(20) (2003) 3111-3119.
[6] A. Herr, J. Molho, J. Santiago, M. Mungal, T. Kenny, M. Garguilo, Electroosmotic capillary flow with nonuniform zeta potential, Anal. Chem., 72(5) (2000) 1053-1057.
[7] H.A. Stone, A.D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech., 36 (2004) 381-411.
[8] M. Gad-el-Hak, The fluid mechanics of microdevices— the Freeman scholar lecture, Journal of Fluids Engineering, 121(1) (1999) 5-33.
[9] Y.L. Zhang, R.V. Craster, O.K. Matar, Surfactant driven flows overlying a hydrophobic epithelium: film rupture in the presence of slip, J. Colloid Interface Sci., 264(1) (2003) 160-175.
[10] D.J. Beebe, G.A. Mensing, G.M. Walker, Physics and applications of microfluidics in biology, Annual review of biomedical engineering, 4(1) (2002) 261-286.
[11] J.C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Philosophical Transactions of the royal society of London, 170 (1879) 231-256.
[12] Y. Zhu, S. Granick, Rate-dependent slip of Newtonian liquid at smooth surfaces, Phys. Rev. Lett., 87(9) (2001) 096105.
[13] V.S. Craig, C. Neto, D.R. Williams, Shear-dependent boundary slip in an aqueous Newtonian liquid, Phys. Rev. Lett., 87(5) (2001) 054504.
[14] C. Soong, P. Hwang, J. Wang, Analysis of pressure-driven electrokinetic flows in hydrophobic microchannels with slip-dependent zeta potential, Microfluidics and Nanofluidics, 9(2-3) (2010) 211-223.
[15] J. Jamaati, H. Niazmand, M. Renksizbulut, Pressure-driven electrokinetic slip-flow in planar microchannels, International Journal of Thermal Sciences, 49(7) (2010) 1165-1174.
[16] C. Navier, Mémoire sur les lois du mouvement des fluides, Mémoires de l’Académie Royale des Sciences de l’Institut de France, 6 (1823) 389-440.
[17] D.C. Tretheway, C.D. Meinhart, Apparent fluid slip at hydrophobic microchannel walls, Phys. Fluids, 14(3) (2002) L9-L12.
[18] B.-H. Jo, L.M. Van Lerberghe, K.M. Motsegood, D.J. Beebe, Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer, Journal of Microelectromechanical Systems, 9(1) (2000) 76-81.
[19] N. Phan‐Thien, A nonlinear network viscoelastic model, J. Rheol., 22(3) (1978) 259-283.
[20] N.P. Thien, R.I. Tanner, A new constitutive equation derived from network theory, J. Non-Newtonian Fluid Mech., 2(4) (1977) 353-365.
[21] D. Li, Electrokinetics in microfluidics, Academic Press, 2004.
[22] M. Chatzimina, G.C. Georgiou, K. Housiadas, S.G. Hatzikiriakos, Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls, J. Non- Newtonian Fluid Mech., 159(1) (2009) 1-9.
[23] R.H. Pletcher, J.C. Tannehill, D. Anderson, Computational fluid mechanics and heat transfer, CRC Press, 2012.
[24] A. Afonso, M. Alves, F. Pinho, Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels, J. Non-Newtonian Fluid Mech., 159(1) (2009) 50-63.
[25] S. Dhinakaran, A. Afonso, M. Alves, F. Pinho, Steady viscoelastic fluid flow between parallel plates under electro-osmotic forces: Phan-Thien–Tanner model, J. Colloid Interface Sci., 344(2) (2010) 513-520.
Keywords