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ABSTRACT: In this paper, we conduct a numerical study of mixed electro-osmotic/Poiseuille slip flows of 
viscoelastic fluids in microchannels with rectangular cross sections by means of second order finite difference 
method. In this regard, the complete form of the PTT-constitutive equation is used to describe the rheological 
behavior of the fluid. The numerical results being validated by the same simplified theoretical study reveal an 
excellent accuracy with relative error less than 0.3%. Afterward, the extended numerical study is used to investigate 
the 2D velocity distribution and volumetric flow rate in the presence of wall surface hydrophobicity through 
rectangular microchannels. In addition, in this investigation, the exact solution of unidirectional electroosmotic flow 
of PTT-viscoelastic fluids is derived for slit hydrophobic microchannels, and after validating, the solution is used to 
investigate the rheological behavior of viscoelastic fluids in the range of operating parameters. The results exhibit a 
uniform effect of hydrophobicity in increasing the profile of 1D velocity distribution in slit microchannels. Finally, 
in order to determine the stability of the grid network, various under relaxation factors are applied to determine the 
speed of convergence of finite difference method, and then, by using the analytical procedure, the critical Weissenberg 
number is introduced as a function of velocity scale ratio and Debye–Hückel parameter. The evaluation of the 
numerical method in the critical area indicates the stability of viscoelastic fluid flow for the values of the Weissenberg 
number less than the corresponding critical value in the theoretical analysis.
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1- Introduction
The development of microfluidic devices produced and 
formed by hydrophobic materials for diagnostic techniques 
and biomedical analysis has led to some inaccuracies of 
conventional methods of flow modeling against experimental 
data. Some of these unconformities are due to considering 
no-slip boundary conditions in analyzing the flow behavior 
through these micro-geometries [1]. In the case of macro-scale 
geometries, the no-slip boundary conditions for Newtonian 
fluid flows match well with the macroscopic experimental 
data. However, some experimental results showed the 
inaccuracy of such boundary conditions for non-Newtonian 
fluid flows over the hydrophobic surfaces [2-4]. In the recent 
years, the extension of these investigations to the cases of 
electroosmotic flow [5, 6], micro-total analysis systems [7, 
8], biological assays in microchannels [9, 10], and gaseous 
micro-flows [11] has been carried out by some researchers, 
and the related results have revealed some deviations from 
conventional mathematical modeling of flow analysis for 
Newtonian fluid flows through microscopic geometries and 
microchannels [12, 13].
In the last decade, the electroosmotic mechanism has been 
widely used in the field of biological and chemical assays 
such as enzyme reaction [14], protein folding [15], synthesis 
or reaction of chemical compounds [16, 17], etc. Meanwhile, 
hydrophobic properties of some materials have gained 
enormous importance for fabrication of Lab-On-a-Chip 
(LOC) devices, and such hydrophobic surfaces have presented 
an efficient way to viscous drag reduction at the fluid-solid 
interface in these microsystems [18,19]. In this regard, 
Soong et al. [14] and Jamaati et al. [15] have reported some 

analytical studies for the simulations of electroosmotic flow 
of Newtonian fluids through microchannels with hydrophobic 
surfaces. In these studies, the Navier slip boundary condition 
is considered as an effective approach to properly model 
the existence of slippage between the fluid and walls of the 
microchannel [16]. On the other hand, the investigation of 
Tretheway and Meinhart [17] revealed that the hydrodynamic 
characteristics of slip flows depends on the kind of the fluid 
and hydrophobic properties of channel wall surface. As 
the microfluidic channels are commonly fabricated by soft 
lithography technique [18] using polydimethylsiloxane 
(PDMS), accordingly, the amount of slippage in the solid 
wall-fluid interface may depend on the kind of the fluid in 
contact with such hydrophobic surfaces.
In the recent analytical studies which has been conducted in the 
field of electroosmotic flow, the hydrodynamic characteristics 
of pressure driven electrokinetic slip flows of viscoelastic 
fluids in planar microfluidic channels with hydrophobic 
surfaces were investigated, and the simplified Phan-Thien-
Tanner (PTT) model was used as the constitutive equation 
of the fluid [1]. Since in most cases, the microchannels are 
produced in rectangular cross sections with finite aspect 
ratios, one of the main issues, which has remained open 
to discussion, is to quantify the effect of sidewalls of the 
microchannel in velocity distribution. Closely related to this 
question, this research aims to evaluate this effect by means 
of 2D analysis of the combined electroosmotic and pressure-
driven flow of viscoelastic fluids with finite difference 
method. The complete form of PTT model [19, 20] with the 
Gordon–Schowalter convected derivative, which covers the 
upper convected Maxwell, Johnson-Segalman and FENE-P 
models, describes the rheological behavior of the fluid. In 
our numerical approach, we proceed to solve the governing 
equations of the problem, including the non-linear Poisson–
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Boltzmann (PB), momentum and the constitutive equation of 
PTT model in a two-dimensional fashion. Also in this paper, 
by considering the complete form of PTT model, we extend 
the previous analytical solutions to analyze the electroosmotic 
flow of viscoelastic fluids in planar microchannels with 
hydrophobic surfaces and symmetric wall zeta potentials, 
and then, with the aid of the obtained 1D velocity profile, 
the rheological behavior of viscoelastic fluids under various 
fluid-wall slippage conditions is investigated. Moreover, 
the effect of Navier slip coefficient and slip exponent on the 
volumetric flow rate is studied.

2- Mathematical modeling of the problem
Fig. 1a schematically illustrates the flow of viscoelastic fluid 
under the combined effect of electroosmotic and pressure 
driving forces through a microchannel with rectangular cross-
section. In Fig. 1b, the formation of the electric double layer 
near the dielectric walls of the microchannel with negative 
zeta potential is depicted. As  shown, due to the accumulation 
of positive ions near the walls because of electrolyte-wall 
ion interaction, a thin immobile layer of positively charged 
ions (Stern layer) is established in this region. Closely near 
this layer, a mobile layer containing net positive charges 
with lower density is formed which by applying an external 
electric field by means of an anode and cathode shown in 
Fig. 1a, the net flux motion of ions in this layer is generated. 
The movement of counter-ions in diffuse layer causes to 
exert a drag force to the carrier fluid, and consequently, the 
electroosmotic flow emerges in the axial direction of the 
microchannel. Fig. 1b also shows the grid network for the 
numerical simulation in which by using a logarithmic relation 
introduced in section 4, the grid clustering in the vicinity of 
the channel walls is produced.   
We make the following assumptions in modeling and 
simplifying the present problem:
1.	 The flow is considered to be steady, fully developed 

and incompressible with the Reynolds number less than 
unity, i.e., Re<1.

2.	 The concentration of ions is high enough which allows 
neglecting the EDL overlap in the center of microchannel 
[21].

3.	 The axial length of the microchannel is much larger than 
the size of the channel cross section, i.e., L >>H,W , for 
which, the hydrodynamic entrance length can be ignored.

4.	 The electrokinetic properties of the interfacial fluid-
wall are considered independent of the slip boundary 
conditions.

5.	 All thermo-physical properties of the viscoelastic fluid 
are considered constant and independent of temperature.

3- Governing equations
In this section, the governing equations of the problem in 
the Cartesian coordinate as shown in Fig. 1 are introduced. 
These equations for a fully developed, incompressible PTT-
viscoelastic flow are the Poisson–Boltzmann equation, 
the equation of continuity, and the modified momentum 
equation coupled with the constitutive equation of PTT 
model governing the extra polymeric stress tensor, which are 
respectively written as follows:
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Fig. 1. Schematic of mixed electroosmotic and pressure driven 
flows in rectangular microchannel (a) axial length of channel, 

including cathode and anode, (b) cross section of microchannel, 
including EDL formation and computational network
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where in the above equations, the quantities with 
dashed superscript indicate the dimensionless form of 
the corresponding variables in the present problem. 
The characteristics of length and velocity for non-
dimensionalization of the problem variables are half the 
channel height (H) and Helmholtz–Smoluchowski velocity 
[21] defined as uHS=-ϵψ0Ez/ηp, respectively. In this way, the 
dimensionless parameters are stated as follows:
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where K=κH is the dimensionless Debye–Hückel parameter 
in which κ=(2n0e

2z2/ϵkBTm)1/2. In these formulations, Weκ 
is the Weissenberg number based on the Debye length 
characterizing the extent of elasticity of the fluid. In 
addition, f(τkk)=1+εWeκ(τxx+τyy+τzz) is the linear form of the 
stress coefficient function proposed by Phan-Thien and 
Tanner [19,20]. The other parameters are introduced in 
the Nomenclature, and for the sake of saving space are not 
explained here.

4- Boundary conditions and numerical analysis
The boundary condition for electrical potential distribution is 
the zeta potential of the wall and for the velocity distribution 
is the general non-linear form of the Navier slip relation. In 
addition, for both electrical potential and velocity profiles, the 
symmetry conditions at the channel main axes are considered 
in the numerical simulation. Therefore, the relevant 
computations are performed in the right upper quadrant of 
the channel cross section. Following the above statements, 
the boundary condition can be written as:
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where Ls=Ls(ηpκ)muHS
m-1 is the dimensionless form of the 

Navier slip coefficient, Ls, and m is the slip exponent 
which is in the range of 1 to 4  [22]. Therefore, based on 
the above boundary conditions, the solution of the Eqs. (1-
4) can be obtained numerically. In this state, to enhance the 
quality and resolution of the results, and also, decrease the 
amount of numerical diffusion stemming from the truncation 
errors in the second order approximation of the derivatives 
in the governing equations, we use a refined grid network, 
in which, the grid points are clustered near the walls of the 
microchannel where there is a sharp variation of velocity and 
electrical potential in these regions. Thus, in order to cluster 
the grids in the physical plane (x,y) and transform it to the 
computational plane (x,y) we use the following relations 
between these two spaces [23]:
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where Ω=ln((β+1)/(β-1)) in which β is the stretching 
parameter in the transverse direction, such that by approaching 
β to unity, the amount of clustering the grids near the walls 
increase. Then, by transforming the governing equations (1-
3) into the computational plane, and afterwards, discretizing 
them by a second order central difference method in the (x,y) 
space, the algebraic form of these equations can be obtained, 
respectively, as follows:
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where Aψ and Au are the coefficients of the discretized 
form of the electrical potential and momentum equations, 
respectively, and Auc

 is the discretized source term of the 
momentum equation containing the electroosmotic and 
pressure driving forces in the channel axial direction. The 
indices P and NB refer to the central node and neighbor grid 
points in vertical and horizontal directions, respectively. 
Finally, the Gauss-Seidel iteration method is employed for 
solving the above system of linear algebraic equations and 
the iterative procedure in this algorithm is continued until 
the specified overall relative error of 10-8 for the electrical 
potential and velocity between two successive iterations is 
obtained.

5- Exact solution of velocity profile in microchannels with 
large aspect ratios
For rectangular microchannels with a large aspect ratio of 
the cross-section, i.e., α=W/H >>1, it is  demonstrated that 
the effect of channel side-walls on the flow dynamics can be 
ignored with sufficient accuracy [21]. In Fig. 2a, the diagram 
of a slit microchannel with the aforementioned properties are 
schematically illustrated. In accordance with section 2, the 
walls of the microchannel have a negative zeta potential, and 
accordingly, due to the absorption of cations of the electrolyte 
solution (blue circles in Fig. 2a) at the vicinity of the channel 
walls, the EDL is formed in these regions (see Fig. 2b). For 
this case, the governing equations of the present viscoelastic 
fluid flow problem (1-4) can be written in one-dimensional 
fashion through which the terms depending on the x direction 
are neglected. At first, the one-dimensional form of the 
Poisson-Boltzmann equation, i.e., Eq. (1), as the governing 
equation of electrical potential distribution together with the 
associated boundary conditions can be written as follows:

2
2 2

2

01
0

sinh     

 

0   ,   
y

y

d
dy

d
dy

ψ ψ ψ

ψ ψ ψ
=

=


= Κ ≈ Κ





 = =


(11)

where considering the conditions of the standard electrokinetic 
model and ψ0 ≤ 25 mV at the room temperature, the Debye–
Hückel approximation can be used to linearize the non-
homogeneous term of the above equation. Also, it is noted 
that the symmetry boundary conditions and the equality with 
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zeta potential at the channel walls are used as the boundary 
conditions for the electrical potential distribution. Therefore, 
the analytical solution of the above differential equation can 
be written as:

( )
0

cosh
cosh

Ky
K

ψ ψ= (12)

Afterward, the one-dimensional form of the PTT constitutive 
equation (Eq. (4)) is employed, and by dropping terms 
depending on the x direction, the remaining stress components 
can be extracted from this equation as follows:
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In order to obtain the explicit form of the f(τkk) in terms of the 
normal stress component in the z direction, i.e., τzz, Eq. (14) 
is divided by Eq. (13), by which the following relation can be 
obtained between the normal stress components in the y and 
z directions:

2yy zz
ξτ τ
ξ
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−
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In this step, with the aid of the above equation, the linear 
stress coefficient function f(τkk), can be explicitly stated in 
terms of τzz as follows:

( ) We1 2kk zzf
K
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where, in this equation, χ=ξ(2-ξ)/ε(1-ξ). Then, by substituting 
the linear stress coefficient function from Eq. (17) into Eqs. 
(13-15), the implicit relations between the stress components 
are obtained. To obtain a relation between the shear and 
normal stress components, we divide Eq. (15) by Eq. (14) 
and the following relation can be found between τzz and τyz:

( )2 21We We 2 0
3zz zz yzκ κξ τ τ ξ τ− + − = (18)

The solution of the above quadratic equation for τzz with 
respect to τyz can be written as follows:
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where a2=4ξ(2-ξ). Then, in order to analyze the continuity 
and momentum equations (Eqs. (2-3))  along with omitting 
the components depending on the x direction and using the 
Debye–Hückel approximation for mixed electroosmotic/
Poiseuille flows, the following differential equations can be 
obtained for the shear stress component:
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By integrating the above equation with respect to the y 
direction, and considering this point that due to symmetry, 
τyz is zero at the center of the microchannel, the following 
relation can be obtained for shear stress distribution:
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Then, by combining Eqs. (15-17, 19, 20), and using the 
symmetry conditions at y=0,, the following relation for the 
velocity gradient can be obtained:
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Therefore, the solution of the above equation can be obtained 
by using the nonlinear Navier slip boundary conditions for 
velocity distribution at y=1. The latter can be stated in a 
dimensional fashion as follows:

m
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u τ

= =
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Subsequently, by calculating the amount of shear stress at the 
wall, y=H, from Eq. (21) and substituting the result to the 
above equation, the following relation for the slip velocity at 
the wall of the microchannel is obtained:
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m
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Therefore, according to the boundary conditions introduced 
in Eq. (24) and integrating the Eq. (22) with respect to y, the 
solution of the velocity profile is obtained as written in Eq. 
(25), in which, A=cosh(K/aWek), B=coshK and C=coshKy are  
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Fig. 2. Schematic of electroosmotic flow in slit microchannel

(a) axial length of channel, including cathode and anode, (b) cross section of microchannel with large aspect ratios (W>>H)
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the alternative coefficients used to compact the solution. The 
solution of the velocity distribution presented here covers the 
velocity profile for electroosmotic flow of   upper convected 
Maxwell model, Johnson-Segalman and FENE-P model 
fluids in the presence of fluid-wall slippage. In comparison 
with previous theoretical models for electroosmotic flow 
of viscoelastic fluids in slit microchannels with symmetric 
wall zeta potentials, the present solution has the following 
coverage:
1.	 By setting Ls→0 and ξ→0, the present velocity profile 

reverts to the previous analytical solution of Afonso et 
al. [24].

2.	 By removing the fluid-wall slippage for the flow of 
PTT fluids and setting Ls→0, the theoretical solution of 
Dhinakaran et al. [25] is recovered.

3.	 By setting ξ→0 for the flow of sPTT fluids, the solution 
of Afonso et al. [1] is recovered.

6- Method validation and grid dependency study
In this section, at first, a comparison between the results of 
finite difference method for electroosmotic flow through 
microchannels with large aspect ratios and those of the 
analytical solution of Afonso et al. [1] in the cases of adverse 
and favorable pressure gradients is made. To make the 
comparison, in this case, we use the equivalent parameters 
in both studies as Weκ=15, K=20, ε=0.01, and recover the 
simplified form of the PTT model by setting ξ=0 in the present 
study. It is noteworthy that, we use a large value for channel 
aspect ratio (α=50) to significantly decrease the effect of side-
walls on velocity distribution at the channel half-width. Then, 
the analytical solution of electroosmotic velocity profile in 
the present study is validated via the comparison with the 
results of the analytical solution of Dhinakaran et al. [25] in 
the limited case of no-slip boundary conditions. To compare 
the results with those of the  aforementioned study, we set 
Ls→0 in order to remove the fluid-wall slippage, and then, the 
velocity profile of the electroosmotic flow at the three cases 
of the Weissenberg number, Weκ=1, 3, 4 is validated.
As can be seen from Fig. 3, for the two kinds of adverse and 
favorable pressure gradients, two values of the Navier slip 
coefficient, Ls=0.001, 0.0005, and two values of slip exponent 
m=1, 2, the results of the present 2D numerical study are in 
good agreement with the analytical results of Ref. [1] with 
the maximum relative error less than 0.3%, and therefore, 
the results of the present FDM simulation can be used for 
microchannels with various channel aspect ratios. Also, for 
various values of the Weissenberg number, the comparison 
between the analytical solution of the present study and that of 
Dhinakaran et al. [25] at the limited case of no-slip boundary 
conditions is made in Fig. 4. As is evident, both results are in a 
good accord again. Therefore, the present analytical solution 
can be utilized for electroosmotic flow of viscoelastic fluids 
described by the complete from of the PTT model through slit 
microchannels with hydrophobic wall surfaces.
In the present numerical simulation, the number of 225 
thousand grid points with equal lateral and transversal space 
discretization of 150×150 grids is employed. The reason for 
selecting such number of grids in each direction are explained 
as follows: at first, in order to evaluate the minimum grid 
points to obtain grid independent results, we use the 
dimensionless volumetric flow rate defined as:
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where um is the average velocity of viscoelastic fluid flow 
through rectangular microchannel.
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Also, M1(x) and M3(y) are the first derivatives of the 
transformed computational coordinates, (x,y), with respect 
to their corresponding physical coordinates, (x,y), in the x 
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_ Fig. 3. Comparison between the results of the velocity profile 
in the mid-cross sectional plane of microchannel obtained from 

the present study with those in Ref. [1]

Fig. 4. One dimensional velocity profiles of axial electroosmotic 
flow, lines: present study, symbols: results of Ref. [25]
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and y directions, respectively. In Table 1, the results of grid 
dependency study with respect to the volumetric viscoelastic 
fluid flow rate are provided at two different values of 
parameter ξ, two values of the Weissenberg number Weκ and 
various grid sizes applied on the computational plane. As 
can be seen, the minimum number of grids that satisfies the 
maximum truncation error of 10-4 with respect to volumetric 
flow rate is 70×70, and further increasing grid numbers does 
not significantly change the results of the FDM simulation for 
the volumetric flow rate.
It is noted that, due to decreasing the effect of channel aspect 
ratio on velocity profile at higher values of this parameter, we 
use α=1 as a critical value for grid dependency study. The 
reason of decreasing the effect of channel aspect ratio on flow 
dynamics at higher ranges of this parameter can be interpreted 
as follows; at large values of α, the variation of velocity 
profile at x direction is confined in the regions inside the EDL 
where the fluid is almost entirely affected by electroosmotic 
body force, and outside the EDL region, the fluid is more 
excited by the pressure driving force which results in a 
nearly parabolic shape velocity profile in the central regions 
of the microchannel. Therefore, it can be concluded that, by 
increasing α, the amount of curvature of the velocity profile 
in the x direction outside of the EDL  decreases, and further 
increasing the number of grids for approximating the velocity 
profile outside of the EDL is not necessary. On the other 
hand, according to the plots of numerical method validation 
sketched in Fig. 3, by using the value of β=1.05 for stretching 
parameter, it is  possible to simulate the viscoelastic fluid 
flow with reasonable accuracy even at large aspect ratios, i.e., 
α=50. Therefore, it can be said that, by using 150×150 grid 
numbers at the regions 1≤ α ≤ 50, both the grid independent 
results and flow simulations with a quality higher than that 
for 70×70 grid numbers is obtained.

7- Stability analysis for numerical and analytical methods
In this section, the stability analysis of the solutions is carried 
out in two aspects: 1. the stability of grid network, 2. the 
stability of viscoelastic fluid flow. The first case belongs 
to the FDM numerical simulation, and for increasing the 
stability of the numerical method and avoiding divergence 
in the iterative algorithm, an under relaxation factor, Rf is 
used and is defined as u2=Rf u

1+(1-Rf)u
0 where u0 and u1 are 

the values of velocities at the grid points in two successive 
iterations, by which the value of velocity for each grid point 
in the network is calculated for using in the next iteration. 
Also, for the latter case, the domain of stability of viscoelastic 
fluid flow in the analytical solution at various Weissenberg 
numbers and flow parameters is examined and compared with 
the results of FDM simulations at very low under relaxation 
factor Rf in 150×150 grid numbers. It is noted that, in the 
analytical solution, the range of operating parameters should 
be determined such that the Eq. (22) is integrable. Therefore, 
the sufficient condition for the integrability of this equation 
can be found as follows:

2
2 2 sinhWe 1

cosh
Kya y

K Kκ
Γ − ≤ 

 
(27)

According to Eq. (21), the left hand side of the above equation 
is the square of the dimensionless shear stress, τyz

2, which the 
value of that at Γ∈(-∞,K2] becomes maximum at the channel 
walls. It is worthy to note the upper limit of Γ equal to K2 

is evaluated from the extremum of Eq. (21) for the cases of 
adverse pressure gradients. Therefore, for a certain value of 
the other parameters, the critical Weissenberg number, Weκ,c, 
can be obtained as follows:

,c
1We
tanha K

K

κ ≤
Γ
− (28)

Therefore, it can be said that: 1. For small values of the EDL 
thickness relative to the half-height of the microchannel 
(K>>1), the hyperbolic term in the above equation 
approaches unity; 2. In the case of zero pressure gradient 
(Γ=0), the obtained relation by Dhinakaran et al. [25] for 
the critical Weissenberg number (|Weκ,c| ≤ a-1) is recovered. 
Thus, the above relation for critical Weissenberg number is 
the extension of that by Dhinakaran et al. [25] in the stable 
domain of viscoelastic fluid flow for various values of 
pressure gradient, EDL thickness and the model parameter 
ξ. In Fig. 5, the variation of critical Weissenberg number 
with respect to parameter ξ at different values of velocity 
scale ratio is plotted. In this figure, the lines indicate the 
aforementioned variation obtained from Eq. (28) from the 
theoretical analysis, such that, for the Weissenberg number 
upper the lines of Fig. 5, there is not any real solution for 1D 
velocity profile. Also, to prove the correctness of Eq. (28), the 
FDM numerical simulation in some points through the plot 
of Fig. 5 is used to test the stability of the obtained solution. 
The results of stability analysis from the FDM simulations is 
obtained under the conditions of microchannels with the large 
aspect ratios, i.e., α=20, Weκ=Weκ,c±0.5 and 150×150 grid 
numbers at two different values of Rf=0.1,0.5. The obtained 
results implies a deterministic and stable velocity distribution 
for Weκ,c-0.5, however, for Weκ,c+0.5 even at very small under 
relaxation factor, the flow simulation with FDM does not 
converge. This phenomenon may imply the occurrence of 
viscoelastic instability in transition from the Weissenberg 
numbers lower than Weκ,c to those higher than this value. The 
consequence of such transition may be interpreted as follows: 
the appearance of 3D-time dependent, chaotic flow whose 
simulation with the simplified assumptions employed in this 
problem is  impossible. Therefore, in order to investigate this 
phenomenon, an unsteady and 3D flow analysis in a very 
refined grid network by direct numerical simulation methods 
should be conducted to represent the unstable behavior of 
viscoelastic fluids at high Weissenberg numbers.

8- Results and Discussion
In this section, at first, by using the theoretical analysis for 
velocity distribution of electroosmotic flow, the shear thinning 
effect of viscoelastic fluids in the presence of hydrophobic 

Grid 
numbers

Weκ=3 Weκ=6
ξ=0 ξ=0.001 ξ=0 ξ=0.001

20×20 -0.964209 0.971644 1.141064 1.192010
30×30 0.964456 0.971948 1.142881 1.194346
40×40 0.964469 0.972005 1.143467 1.195131
50×50 0.964488 0.972609 1.143684 1.195434
60×60 0.964493 0.972902 1.143735 1.195473
70×70 0.964495 0.972908 1.143791 1.195489

Table 1. Grid dependency study of the present problem with 
respect to dimensionless volumetric flow rate (Q)

_

_
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properties of channel wall surfaces is investigated. In Fig. 
4, the effects of Weissenberg number at three distinct values 
of Weκ=1,3 and 4 and constant values of model parameters 
ε and ξ were studied. As  seen, increasing the value of Weκ 
causes an increase in the shear thinning effect associated with 
this parameter, and as a consequence, the maximum axial 
and bulk velocities are increased. Also, it is evident from 
this figure that, by increasing the amount of slippage in fluid-
wall interface, i.e., increase in Ls, a significant deviation from 
the assumption of no-slip boundary conditions at the walls 
emerges, such that, the change in the velocity profile due to 
increasing Ls is on the order of 0.1 maximum axial velocity.
In Fig. 6, the effect of uniaxial extensional viscosity 
predicted by the PTT viscoelastic model at different values 
of Ls is investigated. As can be seen, at constant values of 
Weissenberg number, parameter ξ and other electrokinetic 
parameters, the velocity plateau significantly increases by 
increasing parameter ε. However, at very small values of 
Weissenberg number for the present case of incompressible 
flows, the aforementioned parameter does not have a 
prominent effect on velocity profile. Also, in each velocity 
profile of electroosmotic flow, by increasing Ls  at each value 
of extensional viscosity, the magnitude of velocity at the 
entire channel cross-section increases.
Fig. 7 shows the effect of parameter ξ on velocity profile at 
constant values of  electrokinetic and viscoelastic parameters 
and in the presence of hydrophobicity. In this figure, for 
three cases of ξ=0.001,0.005 and 0.01, three distinct values 
of Ls=0,0.001 and 0.002 are considered. Parameter ξ which 
reflects the non-affine motion of the polymeric network 
junctions relative to the continuum medium [19] is in the 
lower range of variation than other two model parameters, 
ε and Weκ. Therefore, the extent of effectiveness of this 
parameter on velocity profile is smaller than that of the two 
other parameters. From Fig. 7, it can be concluded that the 
effect of the Navier slip coefficient, Ls, on velocity profile 
is much larger than that of parameter ξ under the same 
conditions; such that, by increasing Ls from 0 to 0.0002 at 
the slip exponent of 3, the amount of bulk velocity profile 

increases up to two fold. In a comparison between Figs. 6 and 
7, at larger values of slip exponent, the amount of fluid-wall 
slippage   increases more with changing Ls, such that, we can 
see from these two figures that at m=2, the effect of Ls on 
velocity profile is much smaller than that in m=3.
In this step, the results of the FDM numerical simulation 
for 2D velocity distribution in the cross section of the 
microchannel are investigated. For this case, in order to 
consider the fluid-wall slippage, we use the values of m=2 
and Ls=0.0005 at the channel wall surfaces. In Fig. 8, the two 
dimensional velocity profile for α=1 and in the presence of 
favorable pressure gradient is illustrated. We can see the effect 
of pressure gradient in the same direction of electroosmotic 
force on the generation of convex velocity profile at the entire 
cross section of microchannel. Also, from this velocity profile, 
the uniform increasing effect of slip boundary conditions on 
velocity distribution even at the regions far from the walls 
can be seen. However, due to larger hydrodynamic resistance, 
the effect of slip boundary conditions at the corners of 
microchannel is much smaller than the regions far from the 
edges of the microchannel.Fig. 5. Variation of critical Weissenberg number with respect to 

parameter ξ at different values of velocity scale ratio obtained 
from analytical and numerical study

_

_

_

_

_

_

_
_

_

Fig. 6. The velocity profiles of electroosmotic flow in the mid-
cross sectional plane at various Ls and ε

_

Fig. 7. The velocity profiles of electroosmotic flow in the mid-
cross sectional plane at various Ls and ξ

_
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In Fig. 9, the mixed electroosmotic and pressure opposed flows 
of viscoelastic fluids at α=1 and in the presence of the surface 
hydrophobicity at the upper right quadrant of the channel 
cross section are shown. To plot this figure, the pressure 
driven flow control parameter is set to Γ=1 which denotes 
that the characteristic value of pressure driven flow velocity 
in the reverse direction relative to the electroosmotic flow 
is in the same magnitude as compared with the Helmholtz–
Smoluchowski velocity. As can be seen from this figure, there 
is a non-uniform velocity distribution in the cross section 
of the microchannel; such that, at the regions far from the 
channel walls, the electrokinetic effects of dielectric channel 
walls is much smaller than the regions inside the EDL, and 
therefore, the velocity profile is nearly concave at the central 
regions while is convex at the areas near the walls.  In this 
flow scenario, due to increasing the hydrodynamic resistance 
of the channel geometry at the corners, the extent of fluid-
wall slippage is reduced in these areas while by increasing 
the shear rate in the middle regions of the channel walls, the 
amount of fluid-wall slippage is observable.
As discussed in introduction of this study, due to the large 
surface area-to-fluid volume ratio in microfluidic devices, the 
use of hydrophobic materials results in an improvement of 
the rate of fluid flow in these systems. In Fig. 10, the variation 
of the ratio of volumetric flow rate of viscoelastic fluids to 
that of Newtonian fluids with respect to the model parameter 
ε at two different values of α=1 and 3 and various values of 
slip parameters obtained from FDM simulations are plotted. 
It is noted that the volumetric flow rate of Newtonian fluids 
is calculated under the no-slip boundary conditions. Also, the 
variation of the aforementioned ratio for slit microchannels, 
i.e., α→∞, is calculated from the analytical solution, and the 
relevant  results are shown in this figure.
As can be seen in Fig. 10, at low values of ε in which the 
deviation of rheology behavior of the PTT model at a small 
value of ξ=0.001 relative to UCM model is not significant, 
the effect of slip velocity on increasing the volumetric flow 
rate relative to the Newtonian model is negligible. However, 
for higher values of model parameter ε, and simultaneously, 
increasing the shear thinning effect of PTT fluids associated 
with this parameter,  the influence of Navier slip coefficient 
on increasing the volumetric flow rate is more dramatic than 
that for the low values of parameter ε. Also, it can be seen 
from this figure that, by increasing the channel aspect ratio, 
the amount of deviation of viscoelastic fluid flow rate from its 
Newtonian counterpart is reduced. The reason of this change 
is that, as the channel aspect ratio  increases, the magnitude 
of velocity gradient due to the electrokinetic effects of 
channel walls at the vast central region of the microchannel  
decreases, and consequently, by decreasing the strain rate of 
the viscoelastic fluid, on the rheological behavior of the PTT 
fluids has less influence on the variation of volumetric flow 
rate.

9- Conclusion
In this paper, we presented a numerical study of mixed 
electro-osmotic/Poiseuille slip flow of viscoelastic fluids in 
microchannels with rectangular cross sections. In this regard, 
the complete form of the PTT-constitutive equation was used 
to describe the rheological behavior of the fluid. A second 
order finite difference method was employed to investigate 
the 2D velocity distribution and volumetric flow rate in the 

Fig. 8. 2D velocity profile of electroosmotic flow of PTT fluid in 
the case of favorable pressure gradient (Γ= -1)

Fig. 9. 2D velocity profile of electroosmotic flow of PTT fluid in 
the case of adverse pressure gradient (Γ= 1)

Fig. 10. Variation of ratio of dimensionless viscoelastic to 
Newtonian volumetric flow rate with respect to ε at various α
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presence of wall surface hydrophobicity through rectangular 
microchannels. The numerical results being validated by the 
same simplified theoretical study of the literature revealed an 
excellent accuracy with a relative error less than 0.3%. Also, 
the exact solution of electroosmotic flow of PTT-viscoelastic 
fluids was derived for slit hydrophobic microchannels, 
and after validating, the solution was used to capture the 
rheological behavior of PTT fluids in the range of operating 
parameters. 
In this investigation, by considering the fluid-wall slippage 
at channel walls with hydrophobic surfaces, the effect of 
Navier slip coefficient in various values of slip exponent 
was interrogated. In this regard, the variation of 1D and 2D 
velocity profiles obtained from theoretical and numerical 
analysis, respectively, at different Navier slip coefficients 
and different values of viscoelastic parameters were shown. 
The results of velocity distribution at three different flow 
scenarios of zero, adverse, and favorable pressure gradients 
were analyzed, which a dramatic shear thinning effect of 
extensibility parameter and the Weissenberg number on 
the shear thinning behavior of PTT fluids was illustrated. 
However, the aforementioned change in the dynamics of PTT 
fluid due to the variation of model parameter ξ was much 
smaller than two other parameters. Also, the quantitative 
investigation of the Navier slip coefficient on volumetric 
flow rate of viscoelastic fluid normalized with the Newtonian 
counterpart exhibited; 1. a small deviation of PTT fluid flow 
characteristics relative to the flow of UCM model fluids 
at low values of extensibility parameter, and 2. a salient 
influence of slip coefficient on volumetric flow rate at higher 
values of model parameter ε. On the other hand, the results of 
this study revealed that the shear thinning effect of parameter 
ε on increasing the amount of viscoelastic volumetric flow 
rate normalized with the Newtonian counterpart is more 
prominent at low channel aspect ratios.
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Nomenclature
A Coefficients in discretized equations 
D The rate of strain tensor, s-1

e Electron charge, =1.6×10-19 C
Ez Axial electric field, V.m-1

f(τkk) Stress coefficient function
F,Fz Total/electric body force, N
kB Boltzmann constant,=1.38×10-23 JK-1

K Dimensionless Debye-Hückel parameter
L,H,W Length, height and width, m

n0 Ionic number concentration, m-3

Q Volumetric flow rate, m3.s-1

p Pressure, Pa
Re Reynolds number

Tm
The absolute mean temperature of the 
fluid, K

u,u Velocity vector/axial velocity, m.s-1

uHS Helmholtz-Smoluchowski velocity, ms-1

Weκ Weissenberg number

x,y,z Stream-wise, depth-wise and axial 
directions

Greek symbols

α The ratio of channel width to height
β Stretching parameter
ε The extensional viscosity of PTT fluid
ϵ Permittivity of electrolyte
Γ Velocity scale ratio
ηp Polymeric viscosity coefficient (Pa.s)
κ Debye-Hückel parameter (m-1)
λ Fluid relaxation time (s)
τkk Trace of extra stress tensor
τ Extra polymeric stress tensor (Pa)

ψ,ψ0 Electrical/wall-zeta potential (V)
z Ionic valence 

subscripts

ψ,u Electrical potential/velocity
P,NB Central, neighboring grid points

c Source term
i,j,k Grid indices

superscripts

- Dimensionless parameter
^ Transformed-dimensionless parameter
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