[1] B. Jalili, P. Jalili, Numerical analysis of airflow turbulence intensity effect on liquid jet trajectory and breakup in two-phase cross flow, Alexandria Engineering Journal, 68 (2023) 577-585.
[2] G.G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums, Transactions of the Cambridge Philosophical Society, 9(1) (1850), 1-85.
[3] A.B. Basset, On the motion of a sphere in a viscous liquid, Philosophical Transactions of the Royal Society A, 179(1) (1888) 43-63.
[4] H.W. Iversen, R. Balent, A correlating modulus for fluid resistance in accelerated motion, Journal of Applied Physics, 22(3) (1951) 324-328.
[5] S.R. Keim, Fluid resistance to cylinders in accelerated motion, Journal of Hydraulic Engineering, 82(6) (1956) 1-14.
[6] F. Odar, W.S. Hamilton, Forces on a sphere accelerating in a viscous fluid, Journal of Fluid Mechanics, 18(2) (1964) 302-314.
[7] F.W. Roos, W.W. Willmarth, Some experimental results on sphere and disk drag, AIAA Journal, 9(2) (1971) 285-291.
[8] C.T. Crowe, Drag coefficients of inert, burning, or evaporating particles accelerating in gas streams, PhD Thesis, University of Michigan (1961).
[9] E.K. Marchildon, W.H. Gauvin, Effects of acceleration, deceleration and particle shape on single‐particle drag coefficients in still air, Aiche Journal 25(6) (1979) 938-948.
[10] S.K. Karanfilian, T.J. Kotas, Drag on a sphere in unsteady motion in a liquid at rest, Journal of Fluid Mechanics, 87(1) (1978) 85-96.
[11] S.I. Temkin, S.S. Kim, Droplet motion induced by weak shock waves, Journal of Fluid Mechanics, 96(1) (1980) 133-157.
[12] S.I. Temkin, H.K. Mehta, Droplet drag in an accelerating and decelerating flow, Journal of Fluid Mechanics, 116(1), (1982) 297-313.
[13] Y. Tsuji, N. Kato, T. Tanaka, Experiments on the unsteady drag and wake of a sphere at high Reynolds numbers, International Journal of Multiphase Flow, 17(3) (1991) 343-354.
[14] M. Khalloufi, J. Capacelatro, Drag force of compressible flows past random arrays of spheres. International Journal of Multiphase Flow, 165(8) (2023).
[15] E. Loth, J.T. Daspit, M. Jeong, T. Nagata, T. Nonomura, Supersonic and hypersonic drag coefficients for a sphere, AIAA Journal, 59(8) (2021) 3261-3274.
[16] S.D.J.S. Nanayakkara, J. Zhao, S.J. Terrington, M.C. Thomson, K. Hourigan, Effects of surface roughness on the drag coefficient of spheres freely rolling on an inclined plane, Journal of Fluid Mechanics, 984(A13) (2024) 1-41.
[17] H. Kalman, D. Portnikov, New model to predict the velocity and acceleration of accelerating spherical particles, Powder Technology, 415 (2023).
[18] P.K. Billa, T. Josyula, C. Tropea, P.S. Mahapatra, Motion of a rigid sphere entering and penetrating a deep pool, Journal of Fluid Mechanics, (2024).
[19] S. Zhou, G. Zhang, X. Xu, C. He, Experiments on the drag coefficient of a sphere with a variable velocity, Water Supply, 23(5) (2023) 1903-1916.
[20] N. Singh, M. Kroells, C. Li, E. Ching, M. Ihme, C. Hogan, T. Schwartzentruber, A general drag coefficient for flow over a sphere, Journal of Fluid Mechanics, (2020).
[21] S. Davey, C. Atkinson, J. Soria, Measuring unsteady drag of the flow around a sphere based on time series displacement measurements using physics-informed neural networks, Experimental Thermal and Fluid Science, 144 (2023).
[22] L. Unglehrt, M. Manhart, Decomposition of the drag force in steady and oscillatory flow through a hexagonal sphere pack, Journal of Fluid Mechanics, 974 (A32) (2023) 1-36.
[23] T.A. Johnson, V.C. Patel, Flow past a sphere up to a Reynolds number of 300, Journal of Fluid Mechanics, 378 (1999) pp. 19-70.
[24] Q. Qu, M. Hu, H. Guo, P. Liu, R.K. Agarwal, Study of ditching characteristics of transport aircraft by global moving mesh method, Journal of Aircraft, 52(5) (2015) 1550-1558.
[25] S.A. Morsi, A.J. Alexander, An investigation of particle trajectories in two-phase flow systems, Journal of Fluid Mechanics, 55(2) (1972) 193-208.
[26] F.F. Abraham, Functional dependence of drag coefficient of a sphere on Reynolds Number, Physics of Fluids, 13(8) (1970) 2194-2195.
[27] J. Magnaudet, M. Rivero, J. Fabre, Accelerated flows past a rigid sphere or a spherical bubble. I: Steady straining flow, Journal of Fluid Mechanics, 284(1) (1995) 97-135.
[28] F. Liu, P. Liu, Q. Qu, L. Lin, T. Hu, Numerical study of flow physics and drag of spheres in unsteady motion, in: 2018 Fluid Dynamics Conference, 2018, Georgia, USA, 2018.