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ABSTRACT: The unsteady motion of spheres is important for applications such as falling drops 
and fuel particle acceleration in nozzles. This study investigates the accelerated spheres’ drag for the 
acceleration number -0.2 to 0.2 and the Reynolds number 20-170. Unsteady laminar Navier-Stokes 
equations have been solved using the finite-volume approach, dynamic structured grid, and a second-
order semi-implicit pressure-based method. The steady drag coefficient range is 2.7- 0.9 for the specified 
Reynolds range. For the accelerating sphere, Cd values are larger than the steady-state value (For Re = 
20, Cd is 6.1 for a = 125 m/s2 and 3.7 for 32 m/s2). By increasing Re, Cd decreases gradually and then 
tends to the steady-state value. For deceleration, Cd is smaller than the steady-state value (for Re = 20, 
Cd is -2.5 for a = -125 m/s2 and 1.3 for -32 m/s2). By increasing Re, Cd increases firstly, then decreases, 
and finally tends to the steady-state value. The larger the magnitude of acceleration, the farther away 
the unsteady drag curve is from the steady-state curve. When the sphere is accelerated from rest, the 
flowfield and the drag tend to the state of steady motion with small Reynolds. For deceleration, they 
tend to the state of steady motion with a large Reynolds. A new equation is proposed providing a simple 
accurate method for estimating the spheres’ unsteady drag coefficients.
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1- Introduction
The accuracy of the calculation of spherical particle 

trajectories in two-phase flows is critically affected by the 
equations of drag coefficient. These formulas are typically 
considered as functions of Reynolds number in steady flows. 
Many experimental data presented graphs of drag coefficient 
versus Reynolds number, but only for spheres in steady 
motion. The unsteady motion of spherical particles is more 
common in engineering and applications such as falling 
drops, fuel particle acceleration in nozzles [1], and aircraft 
icing. If the sphere trajectories are calculated using the steady 
formulas, while they experience unsteady motions, obvious 
deviation occurs because the drag force on spheres is not 
a function of the Reynolds number alone. Therefore, it is 
important to study the drag coefficient of spheres in unsteady 
motion.

Early research on the unsteady motion of spheres paid 
more attention to oscillating motions by theoretical methods 
and many experimental approaches. By theoretical analysis, 
Stokes [2] derived the drag of a sphere with linear small-
amplitude oscillation in creeping flow. This means that the 
convective term was ignored, the drag consists of steady and 
“added mass” terms. Basset [3] showed that the forces on a 
sphere in unsteady low-velocity flow can be considered as the 
summation of steady viscous drag, added mass drag, and the 

effect of the history of motion. After this, a sphere’s unsteady 
drag coefficient was generally divided into three parts to 
analyze. It should be noted that the convective terms in the 
Navier-Stokes equations were not regarded so the formula 
works well only for flows with low Reynolds numbers.

Since then, many estimations of unsteady drag coefficients 
of spheres have been developed, and the acceleration number 

2/An vD v=   was gradually entered into the literature. 
This non-dimensional parameter is defined as the ratio of 
local acceleration to convective acceleration. In an unsteady 
motion of a sphere, the local acceleration has a direct effect 
on the pressure distribution around the sphere so that the drag 
force deviates from its steady-state value. Iverson and Balent 
[4] stated that the drag coefficient is dependent on geometry, 
Reynolds number, Froude number, and acceleration number. 
They showed that the drag coefficient is related to the 
acceleration number by their experiments on circular disks 
moving perpendicularly in the air. Keim [5] performed 
experiments on cylinders rising in water and concluded 
that 0.2An ≥ , the acceleration effect was obvious. Odar 
and Hamilton [6] got the steady drag coefficients, the added 
mass, and the effect of motion history, by measuring the 
forces on a sinusoidally oscillating sphere within the range of 
0 Re 62< < . They showed the last two quantities were only 
functions of An .

To study the effect of spherical particle acceleration on their 
drag force in unsteady motion, many experiments have been 
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carried out, and many different results have been concluded. 
Roos and Willmarth [7] reported that for a sphere accelerated 
from zero to a constant velocity, drag exceeds the steady-
state value by about 30% at high Reynolds numbers until the 
final quasi-steady wake is established. In contrast, Crowe [8] 
concluded in his theoretical study that the drag coefficient of 
a sphere decreases with increasing the acceleration number. 
Marchildon and Gauvin [9] evaluated the drag coefficients of a 
single solid particle moving with steady velocity, acceleration, 
and deceleration through still air for 103 Re 104< < . They 
concluded that the drag coefficient in accelerating motion 
was approximately the same as the steady drag, but the drag 
coefficient in decelerating motion was larger than the steady 
drag. These researchers did not reach a unit conclusion about 
the drag coefficient of spheres in unsteady motion. In the 
early experimental studies, researchers used different models, 
different measurement methods, and different mediums, 
therefore some errors may be expected. To get more accurate 
drag characteristics of spheres in unsteady motion, detailed 
flow pressure and velocity fields are needed to investigate the 
physical mechanisms of unsteady effects.

Moreover, some empirical formulas were given for 
the unsteady drag coefficient of spheres by improving 
the existing steady equations. Using an oscillating sphere 
in water, Karanfilian and Kotas [10] experimented for 
102 Re 104< <  and 10.5An ≤ . Using statistical methods, a 
corrected formula ( )1.2 0.031d dsC An C±= +  was extracted, where 

dC  and dsC  are the unsteady and steady drag coefficients. 
Temkin and Kim [11] studied the motion of spheres in a shock 
tube for 3.2 Re 77< < , and proposed the corrected equation 

d dsC C KA= − , where K  is a constant of order 1 and A  is 
defined by 

21p D dvA
v dt

ρ
ρ

 
= − 
 

, in which ρ  is the fluid density, 

pρ  is the density of the particle, v  represents the relative 
velocity, D  is the diameter of the sphere, and t  is the time. 
Temkin and Mehta [12] conducted experiments for studying 
small water droplets in both decelerating and accelerating 
conditions with the range of 9 Re 115< < . By fitting the 
experimental data, they obtained the following formula of the 
drag coefficient:
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The accuracy of experimental data is not satisfactory in the 
transition region 3 5.9A− ≤ ≤ . Tsuji et al. [13] investigated 
the unsteady drag characteristics of spheres with a maximum 
An  of 0.08 and a range of Reynolds numbers from 8,000 to 
16,000. They derived an empirical formula 2.7d dsC C An= +  
that implies that the drag coefficient decreases for 
deceleration and increases for acceleration. To conclude, 
two different empirical formulas ( )1d dsC C f An= +  and 

( )2d dsC C f An= , were employed, but their deviation from 
the experimental results was still large.

Some new research has focused on specific aspects of the 

spheres’ drag problem. Effects of compressibility [14], high 
velocity [15], and surface roughness [16] have been reported. 
Several researchers have discussed the effect of acceleration 
on the spheres drag, but the role of the acceleration number 
has not been addressed [17, 18]. Some other works include 
the acceleration number in predicting the drag coefficient of 
the spheres, but they suggest very complicated correlations 
[19-22].

To summarize, acceleration has a great effect on the drag 
coefficient of spheres moving in the fluid. The detailed flow 
pressure and velocity fields around the sphere in unsteady 
motion are needed to understand the physical mechanism 
responsible for the unsteady effects. In this paper, the drag 
characteristics of spheres in unsteady motion are studied 
numerically with the Reynolds number range of 20 to 170. 
Firstly, the characteristics of the flow physics and drag 
coefficients of spheres under deceleration and acceleration 
conditions are analyzed. Then, a new corrected formula 
for the unsteady drag coefficient is proposed based on the 
concept of acceleration number.

2- Physical Model and Computational Method
2- 1- Physical model

A sphere with diameter D = 1 mm is placed in a still 
gas flow field to move with deceleration and acceleration. 
The absolute values of deceleration and acceleration are 32, 
50, 80, 100, and 125 m/s2. In the first set of calculations, 
the sphere is accelerated from rest to 2.5 m/s with constant 
acceleration. In the second set, it is decelerated from 2.5 m/s 
to rest. The Reynolds number Re /vDρ µ=  ranges from 
20 to 170, where ρ  denotes the gas density, v  denotes the 
relative velocity, and µ  denotes the dynamic viscosity of gas.

A two-dimensional axisymmetric model is used, and the 
motion direction is from right to left. It is known that flow past 
a sphere shows to be axisymmetric and steady for Reynolds 
number below 200 [23]. A global moving grid [24] is applied 
to model the relative motion between the sphere and the 
surrounding fluid. In this approach, the whole computational 
domain (including the boundaries and internal cells) moves 
together with the sphere like a rigid body, i.e., the domain 
moves relatively to the ground. Calculation of acceleration 
and deceleration of the sphere is facilitated in this way. 
Therefore, re-meshing or mesh deformation techniques are 
not needed, which ensures the quality of the domain cells, 
enhances the numerical accuracy and saves the computation 
cost. Fig. 1 shows the schematics of the computational 
model. The computational domain is an 88D × 30D rectangle. 
The right, left, and top boundaries have the pressure-outlet 
boundary condition and the bottom line has the axisymmetric 
boundary condition.

The required coefficients are defined as below:
Drag coefficient ( )21 2d DC F v Sρ ∞= ,
Pressure drag coefficient ( )21 2

pdp DC F v Sρ ∞= ,
Friction drag coefficient ( )21 2

fdf DC F v Sρ ∞= ,
Pressure coefficient ( ) ( )21 2pC p p vρ∞ ∞= − ,
Surface friction coefficient ( )21 2f wC vτ ρ ∞= ,
Where, DF  represents the total drag, 

fDF  and 
pDF  denote 
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surface friction drag and pressure drag forces, v ∞  and p∞  
are free stream velocity and static pressure, S  is the frontal 
area of the sphere, and wτ  denotes the wall shear stress on 
the surface.

2- 2- Numerical method
The commercial CFD software ANSYS FLUENT 19.1 

has been used to solve the axisymmetric unsteady laminar 
incompressible Navier-Stokes equations. The governing 
equations are:

Continuity:
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Momentum:
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The Semi-Implicit Method for Pressure-Linked Equations 
(SIMPLE) method is applied to solve the velocity-pressure 
coupling. The pressure term is discretized by a second-order 
scheme, the diffusion terms are discretized by a second-order 
central difference scheme, the convection terms are discretized 

by a third-order MUSCL scheme, and the transient temporal 
terms are discretized by a first-order implicit scheme. The time 
step size is chosen as 10-5 s after the time step independence 
study. A structured grid is generated, which is refined near the 
sphere and is shown in Fig. 2. The convergence criterion is the 
reduction of continuity, x-velocity, and y-velocity residuals to 
the order of 10-5 in each time step.

2- 3- Grid Independence Study
Five sets of grids are generated for the computation, which 

are numbered 1-5, with the number of cells shown in Table 1. 
Three different values for the Reynolds number are selected 
to obtain the steady drag coefficients. The specific values of 
the results are shown in Table 1. The results from Grids 2-5 
are very close, i.e. no important change is seen in the results 
with refining the mesh. However, the values from Grid 1 
show obvious differences. Therefore, Grid 2 is selected for 
the main computations.

2- 4- Time Step Study and Validation of the Numerical 
Method

The sphere drag coefficients in the accelerated motion with 
2100m/sa =  for three time steps 10-4 s, 10-5 s, and 10-6 s are 

shown in Fig. 3. As it can be seen, the results from 10-5 s and 
10-6 s are almost the same, while there are large differences 
for the values obtained by 10-4 s, thus 10-5 s is selected as the 
time step size in the main unsteady simulations.

For verification, the steady flow over a sphere for a 

 
Fig. 1. Domain geometry and boundary conditions (α denotes the clockwise angle from the sphere leading edge.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Domain geometry and boundary conditions (α denotes the clockwise angle from the sphere 
leading edge.)
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Fig. 2. Computational grid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Computational grid

Table 1. Grid independence studyTable 1. Grid independence study  

         Grid 
          Cd 

Re 
1 (215,000) 2 (470,000) 3 (645,000) 4 (875,000) 5 (1,075,000) 

109.5 1.04445 1.03734 1.03759 1.03722 1.03791 
123.2 0.98747 0.97827 0.97792 0.97751 0.97803 
136.9 0.93933 0.92895 0.92786 0.92764 0.92788 

 

 

Fig. 3. Time step independence study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Time step independence study
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Re range of 20-140 is simulated. Fig. 4 shows the drag 
coefficient of the present numerical study compared to the 
results obtained by the empirical formulas of [25] and [26]. 
The dC  values by the present CFD method are at most 3% 
higher than the empirical results, which show that CFD can 
calculate the sphere drag coefficients accurately.

3- Results and Discussion
3- 1- Drag properties of spheres in unsteady motion

Fig. 5 shows the drag coefficients of spheres versus 
the Reynolds number for different accelerations. The drag 
coefficient is closely correlated to the acceleration for the 
specified range of Reynolds number. The drag coefficients 

 

Fig. 4. Comparison of Cd values between the empirical formulas and the present CFD simulations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison of Cd values between the empirical formulas and the present CFD simulations

 

Fig. 5. Variations of sphere drag coefficients with Reynolds number for various accelerations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Variations of sphere drag coefficients with Reynolds number for various accelerations.
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are significantly different for the deceleration and 
acceleration, the former values are smaller than the steady-
state drag coefficient, while the latter values are larger. 
The larger the absolute value of acceleration, the unsteady 
drag coefficient curve is farther away from the steady-state 
curve. By increasing Reynolds number, the acceleration drag 
coefficients decrease gradually and then tend to the steady 
value, whereas, the deceleration drag coefficients increase 
firstly and then decrease, and finally tend to the steady-state 
value. For Re 150> , the unsteady effect is not substantial.

Fig. 6 shows the variations of pressure and frictional drag 
coefficients in steady movement versus Reynolds number. In 
the specified range of Reynolds numbers, both portions of 
the drags are in the same order. By increasing Re, the portion 
of friction drag decreases and the portion of pressure drag 
increases. 

For the deceleration value of 2100m/sa = −  and the 
acceleration value of 2100m/sa = , the drag coefficient, the 
change of drag coefficient to the steady value ( dC∆ ), and 
the ratios of the friction drag and pressure drag changes to 
the total change ( /df dC C∆ ∆  and /dp dC C∆ ∆ ) are shown in 
Fig. 7. dpC∆  and dfC∆  are the same order. By increasing 
Reynolds, the values of dC∆ , dpC∆ , and dfC∆  of 
deceleration and acceleration all decrease, /dp dC C∆ ∆  
increase and /df dC C∆ ∆  decrease. A noticeable point 
observed in Fig. 7 is that when the sphere is decelerated at a 
small Re, dpC  and dC  has negative values i.e. that the sphere 
experiences a thrust force.

Fig. 8 presents the surface friction coefficient and 
pressure coefficient graphs for various Re values for 
decelerated, accelerated, and steady motions. In the steady 
motion, when Re  increases, pC  decreases on the sphere’s 
leading edge but it increases on the trailing edge, thus the 

pressure drag decreases. By increasing Re , the separation 
point moves upstream which results in a decrement in the 
region of positive shear stress. Therefore, fC  in that region 
is decreased, which decreases the frictional drag. It should be 
noted that for such low Reynolds numbers, the pC  on sphere 
leading edge is greater than unity. This is in agreement with 
the reports of [19] and [27, 28]. In the accelerated motion, the 
variation trend of pC  and fC  with Reynolds resembles that 
of the steady case. In the deceleration, there are substantial 
differences between high and low Reynolds numbers. For low 
Reynolds, the separation location moves upstream relative to 
the steady and accelerated motions and there is a vivid region 
of positive pressure close to the trailing edge. By increasing 
Reynolds, the separation location moves backwards and 
this region shrinks quickly which increases the friction and 
pressure drags. For higher Reynolds, this positive pressure 
region close to the trailing edge vanishes. By increasing the 
Reynolds number, pC  of the leading edge almost remains 
constant, and pC  of the trailing edge slightly decreases, 
so the pressure drag remains unchanged. By increasing the 
Reynolds number, the separation location is almost fixed, but 
the fC  decreases and causes the friction drag to decrease. 
Generally, increasing Remakes the drag coefficients increase 
at first. The coefficients then decrease and finally tend to a 
steady value, which is confirmed by the result of Fig. 5.

The friction and pressure coefficients of the accelerating 
sphere for various Reynolds numbers are shown in Fig. 9. 
Compared with the zero acceleration case, the acceleration 
causes the leading edge pressure to increase and the trailing 
edge pressure to decrease. The separation point is moved 
downstream (the separation region disappears even for low 
Re.) and fC  is increased in the attached flow region so that 
the friction and pressure drag become larger. In contrast, 

 

Fig. 6. Variations of friction and Pressure drag coefficients in steady movement versus Reynolds number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Variations of friction and Pressure drag coefficients in steady movement versus Reynolds number.
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Fig. 7. Drag coefficient, change of drag coefficient to the steady value, and ratios of frictional and pressure drag changes to the total change 
versus Reynolds number. 

 

 

 

 

 

 

 

 

Fig. 7. Drag coefficient, change of drag coefficient to the steady value, and ratios of frictional and pressure drag 
changes to the total change versus Reynolds number.
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the deceleration causes the leading edge pressure to reduce 
and the trailing edge pressure to increase. This leads to 
the forward displacement of the separation location and 
the decrease in the fC  in attached flow region so that the 
friction and pressure drag become smaller. By increasing Re, 
the differences in pressure and friction between the steady, 
decelerated, and accelerated movements gradually disappear.

The around the spheres in steady motion are shown in Fig. 
10, for various Reynolds numbers. The streamlines are drawn 
using the relative velocity of the flow to the sphere’s centroid. 
By increasing Re, the separation location moves upstream 

and the separation region grows. 
The streamlines and pressure contours at Re 68=  are 

shown in Fig. 11, for steady, accelerated, and decelerated 
motions. As the acceleration is decreased from positive to 
negative, the separation location moves upstream and the 
separation region grows. This is quite similar to the change 
of separation flow with the Reynolds number in the steady 
motion.

The ambient air is driven by the sphere during the 
accelerated motion. When accelerating from rest to a nominal 
Re, the ambient flow field pattern does not reach the steady 

 

Fig. 8. Variations of pressure and surface friction coefficients over the sphere surface for different Reynolds numbers 

 

 

 

 

 

 

 

 

 

Fig. 8. Variations of pressure and surface friction coefficients over the sphere surface for different Reynolds numbers
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state with the same Re, but it reaches the state of steady 
motion with a lower Re. It means a smaller separation region 
near the trailing edge, larger pressure on the leading edge, and 
smaller pressure on the trailing edge (Fig. 9). For example, 
the flow field pattern at Re 68=  and 2100m/sa =  (Fig. 11) is 
similar to that of the steady case with Re 41=  (Fig. 10). This 
phenomenon is referred to as the “lagging effect”.

Likewise, when the sphere is decelerated from a high 
to a nominal Re, due to the lagging effect, the airflow 
field pattern around the sphere and the surface friction and 
pressure coefficients tend to the pattern of the steady case 
with a higher Re. A larger separation region is formed near 
the trailing edge, the leading edge pressure is smaller, and the 
trailing edge pressure is larger (Fig. 9). For example, the flow 
field pattern at Re 68=  and 2100m/sa = −  (Fig. 11) is similar 
to that of steady motion with Re 137=  (Fig. 10).

It can be concluded that compared with the drag force in 
the steady motion, the drag force of the deceleration motion is 
smaller and the drag force of the acceleration motion is larger 
because of the lagging effect. This conclusion is similar to 
that of Roos and Willmarth [7], and Tsuji [13], while the 
results presented by Marchildon and Gauvin [9] give almost 
the opposite conclusion. It is possible that some uncertainty 
existed in the early experiments, and the airflow field was 
not measured correctly. The present CFD simulation provides 
a detailed flow structure and pressure and surface friction 
coefficient distributions to discuss the drag characteristics in 
unsteady motion.

3- 2- Modified equation for drag coefficient
To accurately compute the motion of spherical particles in 

multi-phase flows, a general formula for the drag coefficient 
of spheres should be developed, which gives satisfactory 
results for steady and unsteady motions. Several empirical 
expressions have been introduced so far, such as the equations 
suggested by Karanfilian and Kotas [12], Temkin and Mehta 
[14], and Tsuji [15]. In general, two different empirical 
equations, ( )1d dsC C f An= +  and ( )2d dsC C f An= , were 
proposed, but they still have large deviations from the results.

Here, two types of formulas are developed for the 
drag coefficient based on the CFD results of steady and 
accelerated motion. Both drag coefficients are functions of 
the Acceleration number and Reynolds number.
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(5)

Here, the parameters, λ , β , k , δ , and l  are derived from 
the least squares method, dC  is the unsteady drag coefficient, 

dsC  is the steady drag coefficient which is a function of Re. 
The parameters l  and λ  are used for the first time. The 
steady drag coefficient ( )2

0.29238 1 9.06 / RedsC = +  is 
adopted by Abraham’s result [26]. The final equations are as 

 

Fig. 9. Pressure coefficients and surface friction coefficients distribution for various accelerations and Reynolds numbers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Pressure coefficients and surface friction coefficients distribution for various accelerations and 
Reynolds numbers
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Fig. 10. Streamlines and pressure contours over the spheres in steady motion for various Reynolds numbers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Streamlines and pressure contours over the spheres in steady motion for various Reynolds numbers

 

Fig. 11. Streamlines and pressure contours over the spheres at Re = 68 for various accelerations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Streamlines and pressure contours over the spheres at Re = 68 for various accelerations
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below:
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Fig. 12 shows the graphs of the drag coefficient versus the 
Reynolds number for the acceleration case of 0An > . The 
raw data, and corrected data by Eqs. (6) and (7) are shown in 
the figure. Similar curves for the deceleration of 0An < , are 
shown in Fig. 13.

In the selected ranges of Acceleration number and 
Reynolds number, Eq. (6) gives better results for the 
accelerated motion, and Eq. (7) gives better results for the 
decelerated motion. Therefore, the final corrected formulas of 
the sphere drag coefficient are proposed as follows:
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4- Conclusion
The numerical simulation of spheres in the unsteady 

motion has been carried out to study the drag characteristics, 
where the Reynolds number ranges from 20 to 170 and 
the Acceleration number ranges from -0.2 to 0.2. Several 
conclusions are obtained.

1) The steady drag coefficient ranges from 2.7 to 0.9 for 
the specified Reynolds number range. For the accelerating 
sphere, the drag coefficient values are larger than the steady 
values (Cd = 6.1 for Re = 20, a = 125 m/s2 and Cd = 3.7 for Re 
= 20, a = 32 m/s2). By increasing the Reynolds number, they 
decrease gradually and then tend to the steady-state value. 
For the decelerating sphere, the drag coefficient values are 
smaller than the steady values (Cd = -2.5 for Re = 20, a = -125 
m/s2 and Cd = 1.3 for Re = 20, a = -32 m/s2). By increasing 
Reynolds number, they increase firstly and then decrease, and 
finally tend to the steady-state value. The larger the absolute 

 

Fig. 12. Drag coefficients as a function of Re for An > 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Streamlines and pressure contours over the spheres at Re = 68 for various accelerations
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value of acceleration, the farther away the unsteady drag 
coefficient curve is from the steady-state curve.

2) An obvious lagging effect is observed in the unsteady 
motion with a small Reynolds number. When a sphere 
accelerates from rest to a nominal Reynolds number, the flow 
field structure around the sphere, the pressure and surface 
friction coefficients, and the total drag coefficient tend to the 
case of steady motion with a smaller Reynolds number. When 
the sphere decelerates from a high velocity to a nominal 
Reynolds number, these parameters tend to the state of steady 
motion with a larger Reynolds number.

3) Based on the numerical simulation results, a corrected 
formula of unsteady drag coefficient for spheres is proposed 
within the present ranges of Reynolds numbers and 
Acceleration numbers. The proposed formula showed good 
agreement with the previous empirical data. For future works, 
similar formulas may be derived for the drag coefficient of 
the spheres in compressible flows and turbulent flows.

Nomenclature
a	 Acceleration, m/s2

An	 Acceleration number
C	 Aerodynamic coefficient
D	 Diameter, m
F	 Force, N
g	 Gravitational acceleration, m/s2

p	 Pressure, Pa
Re	 Reynolds number
S	 Frontal area, m2

t	 Time, s
v	 Velocity vector, m/s
v	 Relative velocity, m/s
x, y 	 Cartesian coordinates

Greek Symbols
µ	 Viscosity, N.s/m2

ρ	 Density, kg/m3

 

 

 

 

Fig. 13. Drag coefficients as a function of Re for An < 0 

 

 

 

 

 

 

 

 

Fig. 13. Drag coefficients as a function of Re for An < 0
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τ	 Shear stress, Pa
λ , β , k , δ , l 	 Least squares parameters

Subscript
d	 drag
ds	 steady drag
f	 friction
p	 Pressure, particle
w	 wall
∞	 Free-stream condition
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