[1] T.J. Cui, D.R. Smith, R. Liu, Metamaterials, Springer, 2010.
[2] P.U. Kelkar, H.S. Kim, K.-H. Cho, J.Y. Kwak, C.-Y. Kang, H.-C. Song, Cellular auxetic structures for mechanical metamaterials: A review, Sensors, 20(11) (2020) 3132.
[3] M.S. Rad, H. Hatami, Z. Ahmad, A.K. Yasuri, Analytical solution and finite element approach to the dense re-entrant unit cells of auxetic structures, Acta Mechanica, 230 (2019) 2171-2185.
[4] L.J. Gibson, M.F. Ashby, G. Schajer, C. Robertson, The mechanics of two-dimensional cellular materials, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 382(1782) (1982) 25-42.
[5] A. Alderson, K. Alderson, Auxetic materials, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221(4) (2007) 565-575.
[6] A. Pakrooyan, P. Yousefi, K. Khorshidi, M.M. Najafizadeh, A. Nezamabadi, Free vibration analysis of an auxetic honeycomb sandwich plate placed at the wall of a fluid tank, Ocean Engineering, 263 (2022) 112353.
[7] K. Khorshidi, M. Rezaeisaray, M. Karimi, Energy harvesting using vibrating honeycomb sandwich panels with auxetic core and carbon nanotube-reinforced face sheets, International Journal of Solids and Structures, 256 (2022) 111988.
[8] Y. Shabani, P. Mehdianfar, K. Khorshidi, Static buckling and free vibration analysis of bi-dimensional FG metal ceramic porous beam, Mechanics of Advanced Composite Structures, 11(1) (2024) 149-158.
[9] M. Amabili, M.P. Paı¨ doussis, Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction, Appl. Mech. Rev., 56(4) (2003) 349-381.
[10] T. Von Karman, H.-S. Tsien, The buckling of thin cylindrical shells under axial compression, Journal of the Aeronautical Sciences, 8(8) (1941) 303-312.
[11] W. Baker, J. Bennett, C. Babcock, Experimental buckling investigation of ring-stiffened cylindrical shells under unsymmetrical axial loads, (1983).
[12] N. Yamaki, Elastic stability of circular cylindrical shells, Elsevier, 1984.
[13] C. Calladine, Understanding imperfection-sensitivity in the buckling of thin-walled shells, Thin-walled structures, 23(1-4) (1995) 215-235.
[14] E. Elishakoff, Y. Li, J.H. Starnes Jr, J. Cheney, Non-classical problems in the theory of elastic stability, Appl. Mech. Rev., 54(5) (2001) B86-B86.
[15] P.B. Gonçalves, Z.J. Del Prado, Nonlinear oscillations and stability of parametrically excited cylindrical shells, Meccanica, 37 (2002) 569-597.
[16] J.M.T. Thompson, Advances in shell buckling: Theory and experiments, International Journal of Bifurcation and Chaos, 25(01) (2015) 1530001.
[17] P. Kumar, C. Srinivasa, On buckling and free vibration studies of sandwich plates and cylindrical shells: A review, Journal of thermoplastic composite materials, 33(5) (2020) 673-724.
[18] A. Evkin, V. Krasovsky, O. Lykhachova, V. Marchenko, Local buckling of axially compressed cylindrical shells with different boundary conditions, Thin-Walled Structures, 141 (2019) 374-388.
[19] L.N. Ly, V.M. Duc, N.-T. Trung, N.T. Phuong, D.T. Dong, T.Q. Minh, N.V. Tien, V.T. Hung, An analytical approach to the nonlinear buckling behavior of axially compressed auxetic-core cylindrical shells with carbon nanotube-reinforced coatings, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(10) (2021) 2254-2265.
[20] Y. Guo, J. Zhang, L. Chen, B. Du, H. Liu, L. Chen, W. Li, Y. Liu, Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load, Aerospace Science and Technology, 98 (2020) 105662.
[21] K. Khorshidi, B. Soltannia, M. Karimi, M. Zakaryaei, Natural frequencies of submerged microplate structures, coupled to stationary fluid, using modified strain gradient theory, Composite Structures, 326 (2023) 117583.
[22] K. Khorshidi, M. Karimi, Analytical modeling for vibrating piezoelectric nanoplates in interaction with inviscid fluid using various modified plate theories, Ocean Engineering, 181 (2019) 267-280.
[23] K. Khorshidi, S. Savvafi, S. Zobeid, Forced vibration of a three-layer cylindrical shell with an auxetic core containing fluid under the influence of shock load using high-order shear deformation theories, Mechanic of Advanced and Smart Materials, 3(4) (2024) 431-464.
[24] K. Khorshidi, S. Savvafi, S. Zobeid, Investigation of Free Vibration in Fluid-Loaded Cylindrical Shells with a Three-Layer Sandwich Wall and an Auxetic Central Layer, Mechanics of Advanced Composite Structures, (2024).
[25] M. Saeidiha, H. Ahmadi, A. Jalali, Nonlinear vibrations analysis of hyperelastic cylindrical shells utilizing the method of multiple scales, International Journal of Structural Stability and Dynamics, (2023) 2450209.