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ABSTRACT: This study investigated the effect of an auxetic structure, positioned as the central layer in 
a three-layered cylindrical shell, on its buckling behavior. The material for all three layers is aluminum. 
The covers are assumed isotropic. Axial and static loads are modeled as pressure on the shell’s surface. 
In this study, modified shear deformation theory and Galerkin’s numerical solution method were used, 
and the effect of the presence of an auxetic core on the buckling behavior of a three-layered cylindrical 
shell was investigated. The assumed structure for the auxetic cell was a 2D Re-entrant honeycomb. 
Finally, we explore how the length-to-radius ratio, core thickness-to-total thickness ratio, and cell angle 
of the auxetic structure impact the system’s stability, presenting the results. The distinguishing feature of 
the current work compared to previous studies lies in its mathematical approach. We present the system’s 
equations as comprehensively as possible. Finally, the effect of the length-to-radius ratio, the auxetic 
layer’s thickness relative to the whole shell’s thickness, and the cell angle’s size on the buckling load 
were investigated. In short, with the increase of both ratios, the amount of load required for buckling 
decreases, or in other words, system stability is reduced. Also, the size of the cell angle has little effect 
on the system’s stability.

Review History:

Received: May, 12, 2024
Revised: Jun. 09, 2024
Accepted: Jul. 13, 2024
Available Online: Jul. 18, 2024

Keywords:

Buckling

Composite Cylindrical Shell

Auxetic Structure

High Order Shear Deformation The-

ory (HSTD)

31

1- Introduction
The study of buckling in shells is crucial in structural 

mechanics. Buckling often leads to structural failure and 
can occur without prominent warning, making it particularly 
important for shell structures. Understanding buckling 
behavior helps estimate critical loads at which shells may 
buckle, preventing catastrophic collapse. Additionally, 
comprehensive analyses of buckling and strength provide 
valuable information about structural deformation and verify 
load values. Whether it is analyzing cylindrical panels, 
viscoelastic spherical shells, or silos, studying buckling 
ensures safer and more reliable structures.

Cylindrical shells find widespread application across 
various industries, including oil and gas, marine, aerospace, 
and construction. Simultaneously, scientists and researchers 
continually strive to enhance material properties and 
characteristics. Advances in manufacturing technology have 
enabled the production and presentation of a wide range 
of materials. Among these, auxetic materials-part of the 
metamaterial family-stand out due to their unique features 
[1]. As a result, they have garnered interest in using them 
in diverse structural applications. The focus of this study 
is to investigate the buckling behavior of a three-layered 
cylindrical shell that incorporates an auxetic structure in its 
central layer.

Unlike ordinary materials, auxetic materials expand and 
contract in the direction perpendicular to the applied load 
axis when subjected to tension or compression [2]. The 
study of auxetic structures is receiving increasing attention, 
and researchers have explored various two-dimensional 
and three-dimensional structures [3]. In this research, we 
focus on the internal honeycomb structure. Gibson et al.[4] 
introduced the internal honeycomb structure in 1982. When 
this structure experiences tension, the diagonal sides of 
the cells move outward in the vertical direction, causing 
the structure to expand in the transverse direction [5]. In 
reviewing previous studies, Pakrooyan et al. [6] analyzed 
the parameters of a sandwich sheet with an auxetic core 
embedded in an ideal fluid matrix. They investigated the free 
vibration of sandwich panels using the second-order Frostig 
model for the auxetic core with a honeycomb structure and 
the first-order shear deformation theory (FSDT) for the cover 
sheets. In another study, Khorshidi et al. [7] explored energy 
harvesting in a sandwich sheet with an auxetic core featuring 
a honeycomb structure. Their investigation considered 
procedures reinforced with carbon nanolayers. Shabani and 
colleagues have investigated the buckling in porous beams 
made of graded functional materials [8]. Buckling, defined 
as the point of instability in the static behavior of cylinders 
subjected to external loads, plays a crucial role in these 
studies [9]. In 1941, Von Kármán and Tessin conducted initial 
studies on the static stability of thin-walled cylindrical shells 

*Corresponding author’s email: k-khorshidi@araku.ac.ir
                                  

   Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article                                                  
                                is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, 
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/ajme.2024.23182.6110
https://www.orcid.org/0000-0002-7321-972X


K. Khorshidi  et al., AUT J. Mech. Eng., 8(1) (2024) 31-42, DOI: 10.22060/ajme.2024.23182.6110

32

under axial load. They developed and presented a nonlinear 
theory to explain the significant discrepancies between 
experimental results and linear theories [10]. The proposed 
nonlinear theory introduced a form of radial deformation 
capable of reproducing the diamond-shaped pattern observed 
in experimental buckling tests. In a subsequent book written 
in 1983, Babcock examined many related articles [11]. In 
this book, static buckling, dynamic buckling, post-buckling, 
plastic, and elastic buckling with and without consideration of 
imperfections have been investigated. He also investigated the 
sensitivity of each defect by conducting various experimental 
tests. It has now been shown that geometric defects are 
the most influential and essential defects, and converting 
them into known factors is not easy. In 1984, Yamaki [12] 
conducted an extensive investigation into the impact of 
geometrical defects on the buckling behavior of thin-walled 
cylindrical shells. His study encompassed theoretical, 
numerical, and experimental approaches. Subsequently, in 
1995, Kaladin [13] emphasized the significance of initial 
stresses resulting from geometrical imperfections and 
unspecified boundary conditions in influencing shell buckling 
performance. Kaladin also introduced intriguing relationships 
for approximating buckling predictions. He investigated 
simultaneous buckling modes and concluded that it is crucial 
to consider geometrical defects and locked stresses when 
analyzing buckling. These defects can arise from boundary 
conditions. In 2001, Elishakoff et al. [14] studied buckling 
behavior in shells with variable thickness. Additionally, 
Gonçalves and Del Prado investigated dynamic buckling in 
a flawless cylindrical shell subjected to static and dynamic 
axial loading 2002 [15]. In 2015, Thomson and Micheal 
conducted theoretical and experimental investigations on 
shell buckling using an energy-based approach. Their study 
also explored shock sensitivity in incompressible thin shells 
[16]. In 2018, Kumar and Srinivasa published a review article 
on buckling and free vibration of composite cylindrical sheets 
and shells [17]. Evkin et al. (2019) also studied local buckling 
in isotropic cylinders. Various cylindrical shell configurations 
were analyzed under different disturbance conditions [18]. In 
2019, Ly et al. investigated the nonlinear buckling behaviour 
of a carbon nanotube-reinforced cylindrical shell. They 
examined the impact of auxetic core, carbon distribution, 
and volume fraction on the critical buckling load [19]. In 
2020, Guo et al. employed finite element methods to explore 
the behaviour of cylindrical shells composed of various 
auxetic structures. Additionally, their study analyzed energy 
absorption in these different structures [20].

In this study, the effect of the presence of an auxetic 
structure (2D Re-entrant honeycomb) as the central layer in 
a three-layer cylindrical shell is investigated. Donell’s theory 
is widely used in other papers. In this study, the modified 
shear deformation theory is used, and four kinds of functions, 
exponential, trigonometric, hyperbolic, and parabolic, 

are applied, and the results are compared.  Aluminum is 
considered the material for all three layers, including the 
inner and outer layers of the isotropic shell. Additionally, 
the axial and static load is modeled as the pressure applied 
to the surface of the shell. In this study, modified shear 
deformation theory and Golerkin’s numerical solution 
method were used, and the effect of the presence of an austic 
core on the buckling behavior of a three-layered cylindrical 
shell was investigated. The finite element software validated 
the results of the equations and used them for a layered 
cylindrical shell. Finally, the impact of parameters such as 
length-to-radius ratio, core thickness-to-total thickness ratio, 
and cell angle of the auxetic structure is investigated, and the 
results are presented. It was seen that increasing the length-
to-radius ratio in a relatively thick shell ( h

R =0.1) reduces 
the stiffness required for buckling by 25%. In the thinner 
shell ( h

R =0.05), the system’s stability decreases with 
the increase of the length-to-radius ratio, and for the value 
of 10, it almost disappears. With the most minor force, the 
system buckles experimentally. By examining the effect of 
the ratio of the thickness of the auxetic layer to the thickness 
of the shell, it was seen that for a thin shell ( h

R =0.01), the 
system’s stability is shallow, and the change of the said ratio 
does not have a significant effect. However, increasing the 
auxetic layer’s thickness for relatively thicker shells reduces 
the system’s stability more strongly. It was also seen that 
changing the angle in the auxetic cell does not significantly 
change the system’s stability.

2- Define the problem:
A three-layered cylindrical shell with length L , radius R

, and total thickness h  is considered as in Fig.1. To facilitate 
the mathematical modeling of the problem, a cylindrical 
coordinate system with x ,θ , and z components has been 
used. The purpose of this research is to investigate the 
buckling behavior of the mentioned cylindrical shell.

3- Formulation of a three-layer cylindrical shell with an 
auxetic core:

To investigate the buckling behavior, it is assumed that 
the cylindrical shell is subjected to a uniform axial load, and 
Eq.(1) has been used [21]:
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where shellUδ  is the potential energy changes of the shell, 
and Vδ  is the potential energy changes caused by the axial 
load 0N . By using the theory of modified shear deformation 
of Eqs. (2), the governing equations of the system can be 
reached [17].
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where ( ) ( ) ( ), ,  , , ,  ,w , ,  u x t v x t x tθ θ θ  
represent 

longitudinal, circumferential and transverse,  
respectively displacement of the cylindrical shell and 

( ) ( )1 2, , , , , x t x tϕ θ ϕ θ  represent the rotation of the middle 
plane around the x  and θ  axes, respectively. ( ) ( )1 2, f z f z  
are also considered based on different theories as in Table 1.

Assuming linearity, the strain-displacement relations for a 
cylindrical shell will be in the form of Eqs. (3) [4, 5]:

(a)  
 

 

2
0 01

1 2

1
2

xx
u wu f z

x x x

f z
x





 
  
  






 

(b) 

  

   

02
3 0

2
1 20 0 2

2 2

1 1 vu u w
R x R

f z f zw v
R R

 


  

             
   

      

 

(c) 

  

 

   

 

1 2

2
10 0 0

2
0 0 1

1 2

2
2

1

1

x
u u

R x
f zv w v

x R x x

u wf z f z
R x

f z
x







  


 
  

 
   

      
   

       





 

(d) 

  

   1 23 01
11xz

f z f zu wu
x z x z z

 
   

           
 

(e)     

3 2 2

1 20 0
2

1

11

z
u u u

R z R
f z f zw v

z R R z

 




 
   

 
           

 

 

(4) 

     

   

 

 

 

11 12

21 22

44

55

66

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

k kk
xx xx

k k

k
z z

k
xz xz

kx x

Q Q

Q Q

Q

Q

Q

 

 

 

 
 
 
 
 

                     
    
    
        

  

 

 

 

 (3)

 

Fig.1 Definition of cylindrical coordinates for a three-layer shell under axial loading 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Definition of cylindrical coordinates for a three-layer shell under axial loading
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Also, the structural relations of the three-layer cylindrical 
shell are defined as Eq. (4) [6]:
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where the superscript k  represents the layer number. The 
dimensions of the stiffness matrix for layers first and third are 
defined as Eqs. (5). These two layers are made of aluminum 
and are assumed to be isotropic[6].
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where E , G and ν are Young’s modulus, shear modulus, 
and Poisson’s ratio of aluminum, respectively. The properties 
of the auxetic layer (k=2), according to the assumed 
structure, which in this research is considered as a re-internal 
honeycomb structure according to Fig.2, are obtained from 
Eqs. (6) [6].
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Table 1. Mathematical theories for modeling configurations [22]Table 1. Mathematical theories for modeling configurations [22] 
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where 2 2 1
1 2 3

1 1 1

, , l t t
l t l

η η η= = = , sG  and sE  are the elastic 
properties and sρ  is the density of the material that makes 
up the auxetic core, which here is made of aluminum. Eq.(7) 
is used to obtain changes in shell strain energy[7].
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By placing the strain-displacement equations and then 
partially integrating, the strain energy changes for the 
cylindrical shell can be obtained in the form of Eq.(8) [23]:
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that the forces and moments are defined in the form of 
Eqs. (9) [23]:
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Also, potential energy changes due to axial loading will 
be 0N and is obtained by Eq.(10) [7]:
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By substituting Eq.(8) and Eq.(10) in Eq.(1), the governing 
equations of the system are obtained in the form of Eqs. (11) 
[24].

 

Fig 2: A Re-internal Honeycomb Cell Structure [20] 
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The equations of Eqs. (11) are in terms of force and 
moment, and they can be written in terms of displacement as 
Eq.(12) to Eq.(16):
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where iA , iB ,  iC ,  iD ,  iE  and iF  are:
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4- Solving the governing equations of the system:
In this study, the simply supported boundary conditions 

are chosen in the following circumestances[25]: 
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The numerical Galerkin method is considered to solve 
the governing equations of the system. The function of trying 
to solve the problem is assumed as Eqs.(19). Tried functions 
are not time-dependent because the problem is defined and 
solved statically [9].
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In Eqs. (19) 1, , , mn mn mn mnu v w φ
       

 and 2mnφ
 

  are unknown 
coefficients that are obtained after minimizing the error.

( ) ( ) ( ) ( )0 0 0 1, , , , , , , u x x x xv wθ θ θ θφ  and ( )2 , xφ θ are tried 
functions that satisfy the boundary conditions and are 
considered the same weight functions in the Galerkin method. 
Tried functions for simply support conditions are considered 
as Eq.(20) [9].
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By putting the approximation functions in the governing 
Eq.(12) to Eq.(16), the system of equations is in the form 
Eq.(21):

(a)                                                     19-    0
1 1

0, ,  
M N

mn
m n

u x u xu 
 



(b)    0
1 1

0, ,  
M N

mn
m n

v x v xv 
 

  

(c)    0
1 1

0, ,  
M N

mn
m n

w x w xw 
 

  

(d)    1 1
1 1

1, ,  
M N

mn
m n

x x   
 

  

(e)    2 2
1 1

2, ,  
M N

mn
m n

x x   
 


 

 

     
     
     
     
     

0

0

0

1

2

, cos cos

, sin sin

, sin

, cos

, sin sin

m

m

m

m

m

u x x n

v x x n

w x x cos n

x x cos n

x x n

  

  

  

   

   

 

 








 for S-S 

(20) 

 

 

(21)     1 2 0 , 1, ,5T
mn mn mn mn mnu v w i j      ijC              

 

(22)  
2

1 2 3  0cr crN N     
 

 

 

 

 (21)

By setting the determinant of the matrix of coefficients 
ijC  equal to zero, the critical load equation of the system can 

be obtained, which will be according to Eq.(22):
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where crN  is the critical buckling load and iγ  are 
constant coefficients. By solving Eq.(22), the critical load of 
the system will be obtained.

5- Validation of results
To validate the relationships obtained in the previous 

section, the value of the critical buckling load for an isotropic 
cylinder was obtained using the assumed theory and compared 
with the results obtained from ABAQUS software for the 
same cylinder and finally presented in Table 2 and Fig. 3

The information presented in Table 2 indicates that the 
mathematical relationships obtained in the second part have 
appropriate accuracy.

6- Investigating the effect of different parameters of the 
cylindrical shell on the amount of critical load:

• Effect of length-to-radius ratio on critical load:
The effect of the ratio of length to radius (L/R) on the 

critical load for thin and relatively thick shells with the 
boundary conditions of two simple support ends is presented 
in Table 3. It can be seen that in thin and relatively thick 
shells, the critical load decreases continuously with the 
increase in the ratio of the length to the radius of the shell. It 
should be noted that with the increase of the mentioned ratio, 
the stiffness of the structure and the stability of the system 
will decrease, and the shell will experience buckling with less 
load.

• The effect of the ratio of the thickness of the auxetic 
core to the total thickness ( ch h ) on the critical load:

The effect of the ratio of core thickness to total thickness 
( ch h ) in thin and relatively thick shells with the boundary 
conditions of two simple support ends is shown in Table 4. 
A decreasing trend can be seen by increasing the ratio of the 
core thickness to the total thickness. Due to the existence 
of the internal honeycomb structure and the behavior 
characteristic of this structure against the compressive force, 
it is predictable to observe a downward trend for the critical 
load and a decrease in the stability of the system.

• The effect of the cell angle of the auxetic structure on 
the amount of critical load

The parameter θ  is known as the cell angle in the auxetic 

Table 2. Critical load values of isotropic cylindrical shell buckling using mathematical equations and FEMTable 2: Critical load values of isotropic cylindrical shell buckling using mathematical equations and FEM 

 1 (m) , 3 (m) , 3 (mm) , 70 (GPa) , 0.3R L h E       

FEM Exponential theory 
(present work) 

Hyperbolic theory 
(present work) 

Trigonometric theory 
(present work) 

Parabolic theory 
(present work) 

(N) 510×6281.3 (N) 510×64388.3 (N) 510×64388.3 (N) 510×64388.3 (N) 510×64388.3 
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Fig. 3 Verifing Equations With FEM Analysis  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Verifing Equations With FEM Analysis 

Table 3. Critical buckling load of the cylindrical shell according to the change of the length-to-radius ratio 
and the thickness ratio of the cylindrical shell (× 610  )

 

Table 3: Critical buckling load of the cylindrical shell according to the change of the length-to-radius ratio and the 
thickness ratio of the cylindrical shell ( 610

 
 / 0.08h R   / 0.05h R   / 0.01h R   /L R  

186.321 76.9195 3.31232 1 
163.539 73.7303 3.0178 3 
151.131 67.6411 2.86879 5 
140.711 55.6731 2.85157 7 
132.14 54.5211 2.67397 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. The effect of the ratio of the thickness of the auxetic core on the total thickness of the critical 
buckling load (× 610  )

 

 

Table 4: The effect of the ratio of the thickness of the auxetic core on the total thickness of the critical buckling load 
(× 610 ) 

 / 0.1h R   / 0.05h R   / 0.01h R   /ch h 

278.734 66.442 3.4405 0 
269.675 62.2526 3.24009 0.1 
259.221 57.9082 3.03105 0.2 
238.699 53.2584 2.80475 0.3 
211.742 48.1519 2.55259 0.4 
182.701 42.4357 2.26593 0.5 
151.042 35.9542 1.93612 0.6 
116.267 28.5516 1.55452 0.7 
56.1987 20.1073 1.11265 0.8 
14.9217 6.77047 0.603331 0.9 
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structure. (Refer to Fig.2) The more significant the absolute 
value of this angle, the greater the rigidity and density of the 
system, and as a result, the system’s stability is expected to 
be more significant. The data presented in Table 5 confirm 
this fact. Of course, this increase in stability happens with 
a minimal slope. On the other hand, according to the data 
in Table 5, it can be seen that the effect of the ratio of the 
core thickness to the total thickness on the system’s stability 
is significant and more effective than the angle changes in the 
auxetic cell. The reason for this issue was also discussed in 
the previous section.

7- Conclusion and summary:
In this study, the mathematical relationships governing 

the buckling phenomenon in a three-layer cylindrical shell 
consisting of two isotropic layers of aluminum inside and 
outside the shell and a central layer of aluminum made of an 
auxetic cell structure of the re-internal honeycomb have been 
obtained. For this purpose, high-order shear deformation 
theory and the Galerkin numerical method are used. The 
assumed boundary conditions for the problem of simple 
support are considered on both sides of the shell. Finally, 
three parameters of length to radius ( L

R ), the ratio of the 
thickness of the auxetic core to the total thickness  ( ch h ), 
and the cell angle of the auxetic structure’s critical load are 
discussed. Based on the results, it can be stated:

• By increasing the ratio of length to radius ( L
R ), system 

stability and critical load decrease. As in all constant 
coefficients, L has the direct effect, and R has the opposite 
effect.

• The auxetic structure of the inner honeycomb is not stable 
in compressive loading, and with the increase of core 
thickness to total thickness ratio( ch h ), the stability and 
load capacity decreases with a steep slope.

• Cell angle changes have a small effect on system stability. 

Table 5. The effect of the thickness-to-total thickness ratio of the auxetic core and cell angle on the critical 
load (× 610  )

Table 5: The effect of the thickness-to-total thickness ratio of the auxetic core and cell angle on the critical load  
( 610 ) 

80   60   45   30   10   /ch h 

3.24368 3.24055 3.24009 3.23975 3.239 0.1 
3.03827 3.03195 3.03105 3.03037 3.02891 0.2 
2.81546 2.80608 2.80475 2.830377 2.80163 0.3 
2.56682 2.55432 2.55259 2.55135 2.5486 0.4 

2.28363 2.26802 2.26593 2.26449 2.26122 0.5 

1.95727 1.93854 1.93612 1.93457 1.93088 0.6 
1.57887 1.55819 1.55452 1.55294 1.54895 0.7 

1.13977 1.11542 1.11265 1.11114 1.10699 0.8 
0.63222 0.60616 0.60333 0.60047 0.58856 0.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The explanation is that increasing the size of the cell 
angle (θ) increases the stiffness and stability of the system 
and will cause a small increase in the critical load of the 
system.

8-  Nomenclature

A  Area, m2 

E  Modulus of Elasticity, N/m2 

1( )f z  
Considered different theories 

2( )f z  
Considered different theories 

G  Shear modulus, N/m2 

h  Total thickness of the shell 

L Length of shell 

R  Rradius of shell 

0u  
Longitudinal displacement of the 

middle plane 

1u  
Longitudinal displacement  

2u  
Circumferential displacement  

3u  
Transverse displacement  

U  Strain energy  

0v  
Circumferential displacement of 

the middle plane 

0w  
Transverse displacement of the 

middle plane 

, ,x z  Cylindrical-coordinate parameters 

  Poisson’s ratio  

  The variation of the function 

1  
Represent the rotation of the 

middle plane around the θ axis 

2  
Represent the rotation of the 

middle plane around the x-axis 
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