[1] S.B. Pope, Turbulent flows, Cambridge university press, 2001.
[2] S.A. Orszag, Analytical theories of turbulence, Journal of Fluid Mechanics, 41(2) (1970) 363-386.
[3] P. Sagaut, Large eddy simulation for incompressible flows: an introduction, Springer Science & Business Media, 2005.
[4] L. Marstorp, G. Brethouwer, O. Grundestam, A.V. Johansson, Explicit algebraic subgrid stress models with application to rotating channel flow, Journal of Fluid Mechanics, 639 (2009) 403-432.
[5] Y. Kuwata, K. Suga, Wall-modeled large eddy simulation of turbulent heat transfer by the lattice Boltzmann method, Journal of Computational Physics, 433 (2021) 110186.
[6] S.L. Brunton, B.R. Noack, P. Koumoutsakos, Machine learning for fluid mechanics, Annual review of fluid mechanics, 52 (2020) 477-508.
[7] K. Duraisamy, G. Iaccarino, H. Xiao, Turbulence modeling in the age of data, Annual review of fluid mechanics, 51 (2019) 357-377.
[8] M. Gamahara, Y. Hattori, Searching for turbulence models by artificial neural network, Physical Review Fluids, 2(5) (2017) 054604.
[9] H. Frezat, G. Balarac, J. Le Sommer, R. Fablet, R. Lguensat, Physical invariance in neural networks for subgrid-scale scalar flux modeling, Physical Review Fluids, 6(2) (2021) 024607.
[10] Z. Wang, K. Luo, D. Li, J. Tan, J. Fan, Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation, Physics of Fluids, 30(12) (2018) 125101.
[11] Q. Meng, Z. Jiang, J. Wang, Artificial neural network-based subgrid-scale models for LES of compressible turbulent channel flow, Theoretical and Applied Mechanics Letters, 13(100399) (2023) 1-12.
[12] D. Xu, J. Wang, C. Yu, S. Chen, Artificial-neural-network-based nonlinear algebraic models for large-eddy simulation of compressible wall-bounded turbulence, Journal of Fluid Mechanics, 960 (2023) A4.
[13] A. Rasam, M. Shirazi, Subgrid-scale flux modeling of a passive scalar in turbulent channel flow using artificial neural network, Iranian Journal of Mechanical Engineering Transactions of the ISME, 24(2) (2024) 157-172.
[14] M. Chevalier, P. Schlatter, A. Lundbladh, D.S. Henningson, SIMSON: A pseudo-spectral solver for incompressible boundary layer flows, KTH, 2007.
[15] J. Kim, P. Moin, R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number, Journal of fluid mechanics, 177 (1987) 133-166.
[16] A. Rasam, G. Brethouwer, A. Johansson, A stochastic extension of the explicit algebraic subgrid-scale models, Physics of fluids, 26(5) (2014) 055113.
[17] A. Rasam, G. Brethouwer, A.V. Johansson, An explicit algebraic model for the subgrid-scale passive scalar flux, Journal of Fluid Mechanics, 721 (2013) 541-577.
[18] A. Rasam, G. Brethouwer, P. Schlatter, Q. Li, A.V. Johansson, Effects of modelling, resolution and anisotropy of subgrid-scales on large eddy simulations of channel flow, Journal of turbulence, (12) (2011) N10.
[19] M.Y. Hussaini, T.A. Zang, Spectral methods in fluid dynamics, Annual review of fluid mechanics, 19(1) (1987) 339-367.
[20] R.D. Moser, J. Kim, N.N. Mansour, Direct numerical simulation of turbulent channel flow up to Re τ= 590, Physics of fluids, 11(4) (1999) 943-945.
[21] J. Park, H. Choi, Toward neural-network-based large eddy simulation: Application to turbulent channel flow, Journal of Fluid Mechanics, 914 (2021) A16.
[22] P.C. Di Leoni, T.A. Zaki, G. Karniadakis, C. Meneveau, Two-point stress–strain-rate correlation structure and non-local eddy viscosity in turbulent flows, Journal of Fluid Mechanics, 914 (2021) A6.
[23] N. Park, S. Lee, J. Lee, H. Choi, A dynamic subgrid-scale eddy viscosity model with a global model coefficient, Physics of Fluids, 18(12) (2006) 125109.
[24] S. Völker, R.D. Moser, P. Venugopal, Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation statistical data, Physics of Fluids, 14(10) (2002) 3675-3691.
[25] M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid-scale eddy viscosity model, Physics of Fluids, 3 (1991) 1760-1765.
[26] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, TensorFlow: a system for Large-Scale machine learning, 12th USENIX symposium on operating systems design and implementation (OSDI 16), (2016) 265-283.
[27] S. Haykin, Neural networks and learning machines, 3/E, Pearson Education India, 2009.
[28] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv, 1412.6980 (2014) 1-15.
[29] M. Kang, Y. Jeon, D. You, Neural-network-based mixed subgrid-scale model for turbulent flow, Journal of Fluid Mechanics, 962 (2023) A38.
[30] F. Sarghini, G. de Felice, S. Santini, Neural networks based subgrid scale modeling in large eddy simulations, Computers & fluids, 32(1) (2003) 97-108.