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Modeling the subgrid-scale kinetic energy in a turbulent channel flow using artificial 
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ABSTRACT: Modeling the subgrid-scale energy, SGSK , has important applications in large-eddy 
simulation, including the lattice Boltzmann method and formulation of advanced subgrid-scale models. 
In this study, a deep neural network is specifically developed to predict SGSK  for large-eddy simulation 
of turbulent channel flow. To produce the training data for the neural network, a direct numerical 
simulation of turbulent channel flow at the friction Reynolds number Re 381τ =  is performed using an 
existing highly accurate pseudo-spectral method. The impact of the neural network configuration on its 
predictions is studied by examining the mean, probability density function and SGSK  skewness of KSGS. 
Moreover, the correlation with the filtered data, its relative and root mean square error are also examined 
using a priori analysis. Appreciable improvements in the predictions were observed with increasing the 
number of neurons in the hidden layer, up to 64. Increasing the number of hidden layers to two and three 
showed small improvements in the predictions.The performance of the neural network is also compared 
with a dynamic subgrid-scale model. The comparison reveals that the neural network predictions reach 
correlation coefficients higher than 90% with the filtered direct numerical simulation data, whereas the 
dynamic subgrid-scale model predictions only reach up to about 50%. Also, a closer agreement was 
observed with the filtered data for the neural network predictions of KSGS, compared with the dynamic 
subgrid-scale model.
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1- Introduction
Turbulent flows are abundant in industrial and natural 

flows. They often occur at high Reynolds numbers and 
comprise a wide range of scales. The largest scales contain 
energy with length scales proportional to the flow scale,
 , and the smallest scales are those of the Kolmogorov, 
with size η , which dissipate kinetic energy to heat. The 
ratio /η  is in the order of 3/4Re− , where Re  is the flow 
Reynolds number [1]. This shows that the size of the small 
scales reduces as Re  increases. Hence, scale-resolving 
numerical simulations of turbulent flows require a substantial 
number of grid points at high Reynolds numbers. Numerical 
simulations of turbulent flows can be categorized by the 
extent of turbulence modeling involved. A direct numerical 
simulation (DNS) resolves all flow scales even as small as the 
Kolmogorov ones. Hence, it often involves a large number of 
grid points and is not computationally feasible for almost all 
industrial flow cases [2]. In contrast, modeling is performed 
for all turbulence scales in Reynolds-averaged Navier-Stokes 
(RANS) simulations. Hence, they require substantially fewer 
grid points and are computationally feasible for numerical 
simulation of turbulent industrial flows. But they do not 

provide instantaneous details of the flow and their accuracy is 
limited by the performance of the RANS model. Large-eddy 
simulation (LES) is an intermediary approach, where large 
scales are resolved and the effect of the small unresolved 
scales, called subgrid scales, is modeled via a subgrid-scale 
(SGS) model. Reducing the grid requirements, compared 
with the DNS, is obtained in LES.

By filtering the Navier-Stokes equations LES equations 
are obtained, which for incompressible flows are expressed 
in non-dimensional form as [3]
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Here, summation over the repeated indices is implied, iu  

is the filtered velocity vector, jx  is the coordinate system, t  
denotes time, p  is the pressure, and  

ij i j i ju u u uτ = −  is the 
SGS stress tensor, which needs to be modeled [3]. The SGS 
kinetic energy, SGSK , is half the trace of the ijτ , defined as  
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It is an unknown scalar quantity in LES, which needs to 

be modeled. When only the deviatoric part of ijτ  is modeled, 
SGSK is lumped in the pressure term in Eq. (1). In other 

cases, where the whole ijτ  is modeled, such as the explicit 
algebraic SGS model, SGSK needs to be modeled [4]. Another 
application is LES using the lattice Boltzmann method, where

SGSK  cannot be added to the pressure term and needs to be 
modeled [5]. Machine learning (ML) techniques can be used 
to model SGSK . 

In fluid mechanics, ML capabilities have been explored 
to find data features and correlations [6]. Numerous studies 
on ML applications for turbulence modeling have also been 
conducted, including RANS modeling [7] and SGS models 
for LES applications [8]. In LES, an artificial neural network 
(ANN) has been previously used for the prediction of ijτ  
from the resolved velocity-gradient tensor,  /i ju x∂ ∂ . Data 
of two commonly used test cases for training the ANN, are 
from DNS of homogeneous isotropic turbulence (HIT) and 
fully developed turbulent channel flow (TCF). Zhou et al. 
used DNS data of HIT to train an ANN to predict the ijτ  
tensor. They evaluated the influence of filter size, as an input 
parameter, on the ANN predictions [9]. Frezat et al. included 
physical invariance in their ANN for the prediction of the ijτ  
tensor for the HIT [9].

Gamahara et al. [8] Train an ANN with filtered DNS 
data to predict ijτ . They employed the TCF and examined 
the sensitivity of the correlations of ANN predictions with 
filtered DNS data to the choice of input parameters. Wang et 
al. carried out a similar analysis where input parameters were 
the filtered velocity as well as its derivatives [10]. The test 
case employed by Wang et al. was the homogeneous isotropic 
turbulence. Qingjia et al. used a DNN for the prediction of 

ijτ  for compressible TCF at 3000Re =  and Mach number 
0.3Ma = . The input variables for the ANN were  /i ju x∂ ∂ , 

and the ANN predictions reached correlations of up to 0.91 
and a relative error of less than 0.43 [11]. Xu et al. also used 
an ANN to model ijτ  using a nonlinear algebraic SGS model. 
Their model predictions had a higher correlation coefficient 
with filtered DNS data than the dynamic Smagorinsky model 
in TCF [12].

In the current study, a fully connected ANN is developed 
to model SGSK , a quantity that has not been directly computed 
with machine learning algorithms in previous research 
literature. The motivation for modeling this quantity is LES 
using the lattice Boltzmann method, where SGSK  should 
be modeled and cannot appear as a modified pressure. The 
architecture of the employed ANN is similar to the one used 
by Rasam and Shirazi (2024) [13], where the SGS scalar 
flux was modeled. The impacts that the neuron number and 
hidden layers have on the ANN performance are examined 
using different statistics. Specifically, a good prediction of 
the probability density function of SGSk  is introduced as 

an indicator for choosing the optimum number of the ANN 
elements. This approach has not been used in earlier works for 
the prediction of other turbulent quantities. Also, to the best 
of our knowledge, the skewness of SGSK  used in the current 
study, which is a higher-order moment, has not been used in 
previous assessments of ANN predictions.  The training data 
is obtained by performing a DNS of TCF and subsequent 
filtering of the data. The performed DNS is at a higher Re 
than the one performed by Rasam and Shirazi (2024) [13], 
where the SGS scalar, which is a totally different turbulence 
quantity, is modeled via the ANN. The ANN predictions 
are compared with a commonly used SGSK  model, which 
employs a dynamic procedure, for the case of fully developed 
TCF, which has not been reported in the earlier literature.

The proceeding sections of the paper are organized as 
follows. The numerical method, grid size, and simulation 
are explained in section 2. In section 3, filtering operation 
and computation of SGSK  from the DNS data is outlined. The 
employed dynamic SGSK  model is explained in section 4 and 
the ANN structure is explained in section 5. The presentation 
of the results is given in section 6. The conclusions are 
presented in section 7.

2- Numerical Method, Grid size and Simulation
A DNS of fully developed TCF is performed with the 

pseudo-spectral numerical method. LES quantities are 
obtained by filtering the DNS data. The code, called SIMSON 
[14], has a similar structure to the one employed in reference 
[15]. It has been utilized for DNS and LES of fully developed 
TCF in earlier works [16-18]. The code solves the following 
transport equations, in non-dimensional form, for the wall-
normal component of velocity (υ ) and also vorticity (ω )  
are solved.
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Here, vh  and hω  are given as
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The Re /bu δ υ=  is based on the bulk velocity, bu
, kinematic viscosity, υ , and channel half height, δ . The 
numerical domain is given in Fig. 1. 

The employed spatial discretization of Eqs. (3) and (4) 
in the x  and z  directions use Fourier modes, whereas 
Chebyshev polynomials are used in the y direction. The 
3/2 rule [19] is used for the removal of aliasing errors. The 
integration in time for the nonlinear terms is via a third-
order Runge-Kutta scheme, while the nonlinear terms use the 
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Crank-Nicolson method. Further information about the code 
can be found in reference [14]. The computational time to 
perform the DNS was about 35 seconds (on average) for each 
time step on a core i7-13700 intel CPU using 8 cores. The 
total computational time needed to reach a fully developed 
turbulent flow from a laminar solution and getting statistical 
convergence was about 20 days.

The numerical domain extents in the x , y  and z  
directions are 2xL πδ= , 2yL δ=  and zL πδ= , 
respectively, which are shown in Fig. 1. The number of grid 
points is 256xN = , 257yN =  and 256zN = , which lead to 
grid spacings in wall units as:
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Here, x∆  , y∆ , and z∆  represent the grid spacings in the 
x , y , and z directions, respectively. The friction velocity 
is defined using the wall shear stress wallτ  and fluid density
ρ  as /walluτ τ ρ= . The channel has periodic boundary 
conditions in the x and z directions and the fluid satisfies the 
no-slip condition at the walls. Simulations are carried out with 
a constant bulk Reynolds number, Re 6666,b =  resulting in 
the friction Reynolds number Re / 381uτ τδ υ= ≈ .

In the proceeding, .  means statistical averaging in the 
x and z  directions of homogeneity.  Turbulent statistics 
followed by a  +  sign, are non-dimensionalized with uτ  and 
υ , and are expressed in wall units. Ten velocity fields with 
168,427,520 data points are used to compute flow statistics, 
which gave reasonably converged statistics.

A comparison of the mean streamwise velocity, ,u +  

and root-mean-square (RMS) of the velocity components 
in wall units in the streamwise, rmsu + , wall-normal, rmsv +

, and spanwise, rmsw + , directions, between the current and 
reference DNS predictions [20] at a similar Reτ  is illustrated 
in Fig. 2. The two DNS predictions are very close. The minor 
differences in the RMS predictions at the vicinity of the 
channel center are expected to disappear if more data is used 
to compute the statistics.

3- Filtering Operation and SGS Kinetic Energy
To compute SGSk  from the DNS data, using Eq. (2), 

filtering needs to be performed. Filtering in LES for an 
arbitrary function f  is carried out via the convolution [3]

( ) ( )
D

f f p G x p dp∆= −∫ 



   (6)

 
Here, integration is over a domain D  using the filter 

kernel of the top-hat filter [1], 


G
∆

, with the filter size  4∆ = ∆ . 
To compute SGSk , the velocity, iu , and the velocity 

product, i iu u  are filtered to obtain iu  and i iu u , respectively, 
and subsequently, SGSk is computed using Eq. (2). Filtering 
the discrete function if  in one dimension using the top-hat 
filter results in the following discrete formula
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/2 1

/2 /2
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f f f f
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+ −

− +
− +
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where, 
/ 4n = ∆ ∆ =  is the ratio of filter to grid size. Due to 

the non-uniform grid distribution in y, filtering is performed 
only in the x and z directions, which is a common practice in 
LES. The non-uniform grid distribution prohibits filtering in 
y direction since it violates the continuity equation [21-24]. 
Hence, computation of SGSk  involves the application of Eq. 
(7) to both iu  and i iu u .

 
Fig. 1  Schematic of the computational domain with a pressure gradient, /dp dx . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic of the computational domain with a pressure gradient, /dp dx  .
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4- The Dynamic Subgrid-scale Kinetic Energy Model
The commonly employed dynamic SGS model (DSM) [4] 

for the SGSk  uses ∆ , and the inverse time scale, 
ijS ,  to 

model SGSk  as 

   

22
,   2  SGS ij ij ij ijk c S S S S= ∆ =    (8)

 
where ijS  is the resolved strain-rate tensor given as 
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The c  coefficient in Eq.(8) is obtained via the so-called 

dynamic procedure [25], outlined in the following. First, a 
second filter denoted by . , called the test filter, is introduced. 
It has a filter width, ∆  equal to two times ∆ . Second, the 
turbulent kinetic energy due to scales larger than ∆ and 
smaller than ∆ , denoted by L , is computed as
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Given that L  is a known quantity, Eq. (11) can be solved 
to compute the model coefficient c  as
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where averaging of L  and M  is performed in the 

homogeneous directions to reduce the intermittency of the 
coefficient. Moreover, the numerator and denominator of Eq. 
(12) are multiplied by M  to eliminate the possibility of zero 
values in the denominator during the computations. 

5- The ANN-based Subgrid-scale Modeling 
An ANN is developed to predict SGSk . The structure 

of the current ANN is shown in Fig. 3. The ANN is fully 
connected to form a deep neural network (DNN) with input, 
output, and hidden layers. The Keras API and the Tensor 
Flow are employed [26].

The Rectified Linear Unit (ReLU) activation function 
[27] is used for the hidden layers. The output layer has a 
linear activation function. The training of the DNN uses the 
backpropagation and Adam optimization algorithms [28], 
where weights and biases are iteratively rectified in the 
learning process. The following mean absolute error (MAE) 
expression is used as the loss function:

 

(a) (b) 

  
Fig. 2 A comparison of the mean streamwise velocity, 〈𝑢𝑢〉+ (a) and RMS of the streamwise, wall-normal, and 

spanwise velocity, rmsu , rmsv ,  and rmsw , respectively, (b) between the reference and current DNS [20] 

predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A comparison of the mean streamwise velocity, u + (a) and RMS of the streamwise, wall-normal, 
and spanwise velocity, rmsu+ , rmsν + , rmsw +  and  , respectively, (b) between the reference and current DNS [20] 

predictions.
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where m  denotes the number of data points, iY  and 



iY  are the output and exact output values, respectively. The 
training of the DNN can be performed using either filtered 
DNS [29] or LES [30] data. Here, filtered DNS data is used 
to train the DNN for the ten cases considered, resulting in 
specific sets of weights and biases for each case. The DNN 
configuration for each case is specified in Table 1.

The filtered dataset is randomly split to obtain training 
and testing sets, consisting of 80% and 20% of the dataset, 
respectively. The training dataset is further normalized such 
that it has a zero mean and unit variance, which improves 
the convergence rate for the training [9]. The computational 
time needed to perform the training was about 27 seconds (on 
average) for each epoch in case of DNN-6 on a core i7-13700 
intel CPU and the training was performed for 500 epochs. 

The DNN has nine inputs, 1 9X − , which are the filtered 
velocity-gradient tensor components,  /i ju x∂ ∂ , given as

        

3 3 31 1 1 2 2 2
1 9

1 2 3 1 2 3 1 2 3

, , , , , , , , ,u u uu u u u u uX
x x x x x x x x x−

 ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
 (14)

 
This selection of inputs is based on the DSM parameters, 

which have also been used for modeling of ijτ in previous 
studies, see e.g. [21].

A filter size ratio  /n = ∆ ∆ , the grid size ratio of LES to 
DNS, of 4 is chosen for this investigation. The grid scale is 
computed as 3 x y z∆ = ∆ ∆ ∆  . Based on Eq. (5), the LES grid 
sizes in wall units are 37.4x +∆ =  and 18.72z +∆ = . It has 
to be pointed out that the DNN performance depends on n  
used for the training data. A low n  is not suitable for LES 
applications. On the other hand, the correlation coefficient, 
CC  (see Eq.15) decreases with increasing n . The value 
of n  chosen for the current analysis is based on the value 
suggested in ref. [13]. The value of N  used for training of 
the DNN also has an impact on the DNN performance. The 
filter type can also affect the DNN predictions. The employed 
choice of filter is based on the previous investigation of the 
author [13].

6- Results and Discussions
A flow chart of the computational procedure is given in 

Fig. 4. In this section, the performance of the DNN is assessed 
with respect to the filtered DNS data and compared with the 
DSM predictions. It has to be pointed out that the predictions  

To analyze the precision of DNN-predicted SGSK , 
hereafter denoted as DNN

SGSK , the correlation coefficient CC  
between DNN

SGSK   and SGSK , computed from the filtered DNS 
data, denoted hereafter as DNS

SGSK  is computed using their 
fluctuations by the following expression [10]

 
 

Fig. 3 Schematic of the employed DNN showing the input, output, and hidden layers 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Schematic of the employed DNN showing the input, output, and hidden layers
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CC  varies between 0 and 1, as with any other correlation 
coefficient. A higher CC  indicates a DNN

SGSK  that more closely 
follows the DNS

SGSK . The predicted CC  values for all cases are 
given in percent values in Table 1. It should be pointed out 
that the CC  values depend on y and that the values reported 
in Table 1 are integrated values over the y direction between 
the two walls.

6- 1- Effect of the Number of Neurons on the DNN Predictions
The impact that n  has on the DNN predictions is 

studied using cases DNN-1, DNN-2, DNN-3, DNN-4, DNN-
5, and DNN-6, where 8, 16, 32, 64, 96, and 128 neurons, 
respectively, have been employed in one hidden layer. In all 
these cases, only one hidden layer is considered in the ANN. 

The predicted CC  values for cases DNN-1 to DNN-6 vary 
between 90.81% in the DNN-1 case up to 96.73% in the DNN-
6 case. Two types of errors are also used for the evaluation 

of the DNN predictions, namely the relative absolute error 
(ERR), or the relative absolute difference between DNN

SGSK  
and DNS

SGSK , and the root-mean-square (RMS) error, defined 
as the relative squared difference between DNN

SGSK  and DNS
SGSK . 

Both errors are averaged in the x  and z  directions and are 
integrated over the y direction and are given in percent values 
in Table 1. The ERR predictions improve with increasing 
the number of neurons, nn , from 8.02% in case DNN-1 to 
4.30% in case DNN-6. At the same time, the RMS predictions 
improve with increasing nn from 50.03% in case DNN-1 to 
28.55% in case DNN-6.

The DNN predictions of the mean SGS kinetic energy in 
wall units, SGSK + , are compared with the filtered DNS data in 
Fig. 5(a-e). It is observed that increasing nn  from 8 in the 
DNN-1 case to 128 in the DNN-6 case improves the DNN 
prediction of the SGSK + , especially at the vicinity of the wall, 
i.e., / 0.25y δ < , whereas the DNN-4 and DNN-5 predictions 
are similar. The results for the DNN-6 are also identical to the 
DNN-5 and are not shown here.

The DNN predictions of the probability density function 
(PDF) of SGSK +  are also given in Fig. 5. (f-j) for cases DNN-
1 to DNN-5. The PDF only has the positive tail, since

Table 1. Configuration of the DNN, the correlation coefficient, CC, between  and   N is the number of data points used 
for training of the DNN, RMS is the root-mean-square error of the DNN prediction with respect to the filtered DNS 

data,   is the filter size ratio,  is the number of training data points, and NL is the number of hidden layers.

Table 1 Configuration of the DNN, the correlation coefficient, CC, between DNN
SGSK and DNS

SGSK  N is the number of 
data points used for training of the DNN, RMS is the root-mean-square error of the DNN prediction with respect 
to the filtered DNS data, n  is the filter size ratio, N is the number of training data points, and NL is the number 
of hidden layers.  
 

 

Cases NL CC  
% 

RMS 
% 

ERR 
%  

Activation 
function 

Number of 
neurons n  N  

DNN-1 

1 

90.81 50.03 8.02 

ReLu 

8 

4 

16,842,752 
  

DNN-2 95.25 35.90 6.34 16 

DNN-3 96.30 30.30 4.81 32 

DNN-4 96.60 30.19 4.74 64 

DNN-5 96.67 29.65 4.32 96 

DNN-6 96.73 28.55 4.30 128 

DNN-7 2 96.75 28.30  3.49 128 

DNN-8 3 96.79 28.25  3.36 128 

DNN-9 2 96.25 32.70 4.53  128 1,020,033 

DNN-10 2 96.39 31.50  4.10 128 4,080,132 
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SGSK +  is always positive. It can be observed that the DNN 
predictions of the PDF follow the filtered DNS predictions 

2SGSK + <  in all cases. It is interesting to observe that a 
number of neurons in the hidden layers lower than 64, see 
Fig. 5 (f-h), is not sufficient for accurate prediction of the 
PDF for higher values of SGSK + , due to the nonlinear nature of 
turbulence. Improvements in the predictions are observed up 
to 64 neurons in the case DNN-4, while DNN-4, DNN-5, and 
DNN-6 predictions of the PDF are similar. It is worth noting 
that the discontinuous behavior of the tail of the PDF plot is 
due to the fact that no data has fallen in that range of the PDF. 

To further study the impact of the nn  on the DNN 
predictions, the skewness of the predicted SGSK  is computed. 
The skewness, an indicator of the PDF asymmetry, is a 
higher-order statistic, defined as
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where, the RMS of SGSK  is used in the denominator. The 
KS  is presented in Fig. 5 (k-o). The PDF was given previously 

at a particular wall distance, whereas the skewness is given 
as a function of y . The skewness has three peaks, one close 

to each wall and one close to the center of the channel. It is 
observed that KS  is under-predicted across the entire channel 
height in the DNN-1 case. 

Comparing DNN-1 to DNN-6 predictions, it can be 
observed that KS  prediction is improved by increasing nn  
from 8 in case DNN-1 up to 32 in case DNN-3. Further 
increasing nn  does not significantly improve the KS  
predictions.

6- 2- Effect of the Number of Hidden Layers and Training 
Data on the DNN Predictions

Increasing the number of hidden layers, NL, in cases 
DNN-7 and DNN-8, decreases the ERR from 4.30% in case 
DNN-6 with one hidden layer to 3.49% in case DNN-7 with 
two hidden layers and 3.36% with three hidden layers in case 
DNN-8, see Table 1. A similar behavior is observed for the 
RMS, where it decreases from 28.55% in the DNN-6 case to 
28.30% in the DNN-7 case and 28.25% in the DNN-8 case. 
The correlation coefficient, CC  increases from 96.73% in 
case DNN-6 to 96.75% and 96.79% with increasing NL to 
two and three in cases DNN-7 and DNN-8, respectively.

Fig. 7(a-c) shows a comparison of the SGSK + , predicted 
by the DNN with different NL in cases DNN-6, DNN-7, and 
DNN-8. One can observe small improvements in the SGSK + , 
especially the peak value, with increasing NL to two in case 
DNN-7. However, the predictions in cases DNN-7 and DNN-

 

Fig. 4 Flow chart of the computational procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Flow chart of the computational procedure



A. Rasam and A. Najarian, AUT J. Mech. Eng., 8(1) (2024) 19-30, DOI: 10.22060/ajme.2024.23091.6101

26

   

   

   

   

   
Fig. 5 Comparison between the DNN predictions and filtered DNS data of the mean SGS kinetic energy in wall units, 

SGSK  , (a-e), the PDF of SGSK   (f-i), and its skewness, KS  (k-o). 
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Fig. 5. Comparison between the DNN predictions and filtered DNS data of the mean SGS kinetic energy in wall 

units, SGSK + , (a-e), the PDF of SGSK +  (f-i), and its skewness, KS (k-o).
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8 are almost similar.
The number of employed training data points on the 

performance of the DNN can also be examined by comparing 
the performance of the cases DNN-7, DNN-9, and DNN-10, 
where, 1,020,033, 4,080,132 and 16,842,752 data points, 
respectively, have been employed for training of the DNN. It 
is expected that training the DNN over a larger data set would 
result in increased accuracy and better correlation between 
the DNN and filtered DNS predictions. This is due to the 
fact that the DNN is presented with more diverse turbulence 
events, which provides the opportunity for a better learning 
process. In fact, it can be observed that CC  increases with 
the increase N , while RMS and ERR both decrease with 
increasing N . However, one has to note that the accuracy of 

the DNN predictions does not increase linearly with increasing 
N . Hence, it is decided to stop with 16,842,752 number of 
training data for the purpose of the current investigation.

The PDF and KS  of SGSK +  are also given in Fig. 6(d-f) 
and Fig. 6(g-i), respectively, for cases DNN-6, DNN-7 and 
DNN-8. It can be seen that the differences in the predictions 
are minor for these statistics with small differences in the tail 
of the PDF.

Given that the number of computations of the DNN model 
for SGSK  increases with increasing NL and considering the 
findings presented in this section, it can be deduced that the 
DNN-7 case can be chosen as the optimum model. Hence, the 
rest of the results in the upcoming section are only given for 
the DNN-7 case.

 

 

 

 

 

 

 

 

 

 

 

   

   

   
Fig. 6  Comparison between the DNN predictions and filtered DNS data of the mean SGS kinetic energy in wall units, 

SGSK  , (a-c), the PDF of SGSK   (d-f) and its skewness, KS , (g-i). 
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Fig. 6. Comparison between the DNN predictions and filtered DNS data of the mean SGS kinetic energy in wall 
units, SGSK + , (a-c), the PDF of SGSK +  (d-f) and its skewness, KS  , (g-i).
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6- 3- Comparison of the DNN and DSM Predictions
The DSM is often used to model the SGSK . It uses the 

dynamic procedure, as outlined in section 4. Here, the 
performance of the DNN for case DNN-7 is compared to that 
of the DSM in the prediction of the SGSK . Fig. 7(a) presents 
the SGSK +  predicted by the DNN-7, the DSM, and the filtered 
DNS data. 

The SGSK +  has a peak at about 12y + =  in the buffer layer, 
which corresponds to the peak location of the turbulent 
kinetic energy. The location of this peak is well-predicted 
by the DNN, but its magnitude is slightly under-predicted, 
compared with the filtered DNS data. On the contrary, the 
DSM prediction of the peak location is slightly further away 
from the wall, compared with the filtered DNS data and 
DNN-7 prediction, but its peak value is closer to the filtered 
DNS data than the DNN-7 prediction. It is also observed that, 
in contrast to the DNN-7 case and the filtered DNS data, the 
DSM prediction is intermittent across the whole channel 
height. Overall, the DNN shows very promising predictions 
of SGSK and its prediction lies closer to the filtered DNS 
data across the whole channel height, compared with the 
commonly used DSM. 

The correlation coefficient, CC  is also given in Fig. 7(b). 
It is observed that the DSM has a much lower CC , compared 
with the DNN-7, reaching values of only up to 0.5, whereas 
the DNN-7 prediction reaches values even higher than 0.9 
away from the walls. The DSM also has a very low CC  in 
the important near-wall region, / 0.1y δ < , compared with 
the DNN-7 case. The low CC  for the DSM shows that the 

SGSK is not sufficiently correlated with the ijS  tensor. On the 

contrary, the DNN uses the velocity-gradient tensor as input, 
allowing for a better correlation with DNS

SGSK .

To comprehend the discussion, the PDF of SGSK +  is given 
in Fig. 8(a) for the DNN-7 case, DSM, and filtered DNS data 
at a wall distance of about 12y + = . It is observed that the 
DNN-7 prediction closely follows the filtered DNS data, 
whereas the DSM does not. The DSM prediction is much 
lower than the filtered DNS for 2SGSK + > , in contrast to the 
DNN-7 prediction. The smaller PDF values with the DSM, 
indicate a lower number of events with high SGSK +  values.

Finally, the KS is given in Fig. 8(b) for the DNN-7 case, 
DSM, and the filtered DNS data. It is observed that the 
DSM predicts larger KS  values, compared with the DNN-7 
case and the filtered DNS data. It neither correctly predicts 
the near-wall peak nor the one in the center of the channel. 
Its prediction is very intermittent, even in the mean value, 
compared with the DNN-7 case and the filtered DNS data. 
The fluctuating predictions of the DSM for KS  are due to the 
fluctuating behavior of the dynamic coefficient.

7- Concluding Remarks
A deep neural network (DNN) was developed, trained 

and its performance to predict the SGS turbulent kinetic 
energy, SGSK , for large-eddy simulation (LES) of turbulent 
channel flow was analyzed. The required training data for the 
DNN was obtained via a direct numerical simulation (DNS), 
performed at the friction Reynolds number 381Reτ =  using 
a pseudo-spectral method. Filtering was performed over the 
DNS database, with over 160 million data points, to obtain 
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Fig. 7 Comparison of the mean SGS kinetic energy in wall units, SGSK  , between the DNN-7 and DSM 

predictions and the filtered DNS data (a) and comparison of the correlation coefficient, CC  with respect to 
the normalized wall distance, /y   , between the DNN-7 and DSM predictions (b). 

Fig. 7. Comparison of the mean SGS kinetic energy in wall units, SGSK +  , between the DNN-7 and DSM 
predictions and the filtered DNS data (a) and comparison of the correlation coefficient,   with respect to the 

normalized wall distance, /y δ  , between the DNN-7 and DSM predictions (b).
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LES data.
The developed DNN successfully predicted the SGSK  

with correlation coefficients with the filtered DNS data, CC
, reaching up to 96.79%. It was observed that increasing the 
number of neurons, from 8 to 128, increased the accuracy 
of the SGSK , its probability density function (PDF), and 
skewness, KS  predictions. The improvements where in the 
magnitude of the near-wall peak of SGSK , the tail of the PDF, 
and the magnitude of the KS . The effect of the NL in the 
predictions of the DNN was studied using 1, 2, and 3 hidden 
layers. It was observed that increasing NL to more than two 
did not markedly improve the predictions of the DNN.

The predictions of the DNN were compared with those 
of a commonly used dynamic SGS model (DSM). The DNN 
outperformed the DSM in the prediction of SGSK  its PDF and 

KS  with less intermittent predictions in better agreement 
with the filtered DNS data. The DNN prediction also showed 
much higher CC  values, compared with the DSM.

The SGSK  presented in this paper is intended to be used 
for LES of wall-bounded flows using the lattice Boltzmann 
method (LBM). Hence, a posteriori assessment of the 
performance of the current model in LES using the LBM 
would be an interesting future research. It has to be pointed 
out that the current ANN is trained using filtered DNS data 
of turbulent channel flow at Re 381.τ = Hence, the accuracy 
of the current model needs to be evaluated for other test cases 
and Reynolds numbers in future analysis.
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