[1] M. Cadek, J. Coleman, V. Barron, K. Hedicke, W. Blau, Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites, Applied physics letters, 81(27) (2002) 5123-5125.
[2] E.T. Thostenson, T.-W. Chou, On the elastic properties of carbon nanotube-based composites: modelling and characterization, Journal of Physics D: Applied Physics, 36(5) (2003) 573.
[3] N. Hu, H. Fukunaga, C. Lu, M. Kameyama, B. Yan, Prediction of elastic properties of carbon nanotube reinforced composites, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2058) (2005) 1685-1710.
[4] H.-S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Composite Structures, 91(1) (2009) 9-19.
[5] P. Zhu, Z. Lei, K.M. Liew, Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory, Composite Structures, 94(4) (2012) 1450-1460.
[6] Z. Lei, K. Liew, J. Yu, Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method, Composite Structures, 98 (2013) 160-168.
[7] Z. Lei, K. Liew, J. Yu, Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment, Composite Structures, 106 (2013) 128-138.
[8] M. Wang, Z.-M. Li, P. Qiao, Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates, Composite Structures, 144 (2016) 33-43.
[9] N. Wu, Q. Wang, S. Quek, Free vibration analysis of piezoelectric coupled circular plate with open circuit, Journal of Sound and Vibration, 329(8) (2010) 1126-1136.
[10] M.A. Farsangi, A. Saidi, R. Batra, Analytical solution for free vibrations of moderately thick hybrid piezoelectric laminated plates, Journal of Sound and Vibration, 332(22) (2013) 5981-5998.
[11] Y. Kiani, Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers, Computers & Mathematics with Applications, 72(9) (2016) 2433-2449.
[12] L. Zhang, Z. Song, K. Liew, Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow, Computer Methods in Applied Mechanics and Engineering, 300 (2016) 427-441.
[13] B. Selim, L. Zhang, K. Liew, Active vibration control of CNT-reinforced composite plates with piezoelectric layers based on Reddy’s higher-order shear deformation theory, Composite Structures, 163 (2017) 350-364.
[14] G. Cheng, Y. Lee, C. Mei, Flow angle, temperature, and aerodynamic damping on supersonic panel flutter stability boundary, Journal of aircraft, 40(2) (2003) 248-255.
[15] H. Navazi, H. Haddadpour, Aero-thermoelastic stability of functionally graded plates, Composite Structures, 80(4) (2007) 580-587.
[16] K.-J. Sohn, J.-H. Kim, Structural stability of functionally graded panels subjected to aero-thermal loads, Composite Structures, 82(3) (2008) 317-325.
[17] M. Hosseini, S. Fazelzadeh, Aerothermoelastic post-critical and vibration analysis of temperature-dependent functionally graded panels, Journal of Thermal Stresses, 33(12) (2010) 1188-1212.
[18] P. Marzocca, S. Fazelzadeh, M. Hosseini, A review of nonlinear aero-thermo-elasticity of functionally graded panels, Journal of Thermal Stresses, 34(5-6) (2011) 536-568.
[19] Z.-G. Song, F.-M. Li, Investigations on the flutter properties of supersonic panels with different boundary conditions, International Journal of Dynamics and Control, 2(3) (2014) 346-353.
[20] S. Fazelzadeh, S. Pouresmaeeli, E. Ghavanloo, Aeroelastic characteristics of functionally graded carbon nanotube-reinforced composite plates under a supersonic flow, Computer Methods in Applied Mechanics and Engineering, 285 (2015) 714-729.
[21] Z. Song, L. Zhang, K. Liew, Aeroelastic analysis of CNT reinforced functionally graded composite panels in supersonic airflow using a higher-order shear deformation theory, Composite Structures, 141 (2016) 79-90.
[22] J. Fidelus, E. Wiesel, F. Gojny, K. Schulte, H. Wagner, Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing, 36(11) (2005) 1555-1561.
[23] M. Nie, D.M. Kalyon, F.T. Fisher, Interfacial load transfer in polymer/carbon nanotube nanocomposites with a nanohybrid shish kebab modification, ACS applied materials & interfaces, 6(17) (2014) 14886-14893.
[24] K. Liew, Z. Lei, J. Yu, L. Zhang, Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach, Computer Methods in Applied Mechanics and Engineering, 268 (2014) 1-17.
[25] A. Preumont, Piezoelectric systems, Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems, (2006) 95-130.
[26] P. Lee, W. Lin, Piezoelectrically forced vibrations of rectangular SC-cut quartz plates, Journal of applied physics, 83(12) (1998) 7822-7833.
[27] Q. Wang, S. Quek, C. Sun, X. Liu, Analysis of piezoelectric coupled circular plate, Smart Materials and Structures, 10(2) (2001) 229.
[28] E.H. Dowell, Aeroelasticity of plates and shells, Noordhoff International Publishing, Leyden, 1975.
[29] E.H. Dowell, Nonlinear oscillations of a fluttering plate, AIAA journal, 4(7) (1966).
[30] M. Hosseini, R. Bahaadini, Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory, International Journal of Engineering Science, 101 (2016) 1-13.
[31] R. Bahaadini, M. Hosseini, Effects of nonlocal elasticity and slip condition on vibration and stability analysis of viscoelastic cantilever carbon nanotubes conveying fluid, Computational Materials Science, 114 (2016) 151-159.
[32] R. Bahaadini, A.R. Saidi, M. Hosseini, On dynamics of nanotubes conveying nanoflow, International Journal of Engineering Science, 123 (2018) 181-196.
[33] Z.-X. Wang, H.-S. Shen, Nonlinear vibration of nanotube-reinforced composite plates in thermal environments, Computational Materials Science, 50(8) (2011) 2319-2330.
[34] Y. Han, J. Elliott, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Computational Materials Science, 39(2) (2007) 315-323.
[35] M. Mohammadzadeh-Keleshteri, H. Asadi, M. Aghdam, Geometrical nonlinear free vibration responses of FG-CNT reinforced composite annular sector plates integrated with piezoelectric layers, Composite Structures, 171 (2017) 100-112.
[36] J. Dugundji, Theoretical considerations of panel flutter at high supersonic Mach numbers, AIAA Journal, 4(7) (1966) 1257-1266.
[37] A.H. Baferani, A. Saidi, E. Jomehzadeh, An exact solution for free vibration of thin functionally graded rectangular plates, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(3) (2011) 526-536.
[38] A.R. Saidi, R. Bahaadini, K. Majidi-Mozafari, On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading, Composites Part B: Engineering, 164 (2019) 778-799.
[39] G. Chevallier, S. Ghorbel, A. Benjeddou, A benchmark for free vibration and effective coupling of thick piezoelectric smart structures, Smart Materials and Structures, 17(6) (2008) 065007.