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ABSTRACT: The dynamic and static instabilities of plates reinforced by carbon nanotubes which are
fully covered by two piezoelectric layers subjected to supersonic airflow are investigated. For aero-elastic
analysis of thin functionally graded carbon nanotube reinforced composite plate, classical plate theory,
as well as first-order piston theory, has been applied. The effective material properties of functionally
graded carbon nanotube-reinforced composite plates are evaluated based on the rule of mixture with
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consideration of efficiency parameter. Also, five various types of carbon nanotube distributions through

the thickness direction are investigated. The distribution of electric potential across the piezoelectric  Keywords:

thickness is assumed to be a quadratic function. Then, two kinds of electric boundary conditions such .~ (..

as open circuit and closed circuit are considered. The coupled governing electro-mechanical equations Carb b
. . . .. . . . . . aroon nanotube
are derived by using Hamilton’s variation principle and electrostatic Maxwell’s equation. The partial )
differential governing equations are transformed into a set of ordinary differential equations by utilizing Composite plates

Galerkin’s approach. The result shows that the functionally graded carbon nanotube-reinforced composite ~ Piezoelectric layers
plate integrated by two piezoelectric layers in open circuit condition has higher both flutter aerodynamic

pressure and natural frequencies, in contrast with a similar plate in closed circuit conditions. In addition,

First-order piston theory

the result elucidated that the stability region increase as the piezoelectric thickness increases.

1- Introduction

Nowadays, Carbon Nanotubes (CNTs) are well known
for their special properties such as high elastic modulus, high
tensile strange, and high stiffness. Then, for the sake of the
extraordinary physical and mechanical properties of CNTs,
they have become a promising candidate for the reinforcement
of nanocomposites [1, 2]. Nanocomposites are composed of
the polymer matrix and CNTs as a reinforcement. As reported
by Hu et al. [3], the mechanical properties of carbon nanotube-
reinforced composites are noticeably improved by adding
the CNTs even at very low volume fractions in the polymer
matrix. The distribution of CNTs in the polymer matrix may
be Functionally Graded (FG) or Uniformly Distributed (UD).
Therefore, the material properties vary continuously from
one surface to the other. Up to now, a large body of literature
has investigated the mechanical behaviors of Functionally
Graded CNT Reinforced Composite (FG-CNTRC) plates
and shells. The study on the nonlinear bending of simply
supported FG-CNTRC plate which reinforced by Single-
Walled Carbon Nanotubes (SWCNTs) under transverse load
in the thermal environment is performed by Shen [4] based
on the Higher-order Shear Deformation Theory (HSDT)
and using perturbation technique. Static and free vibration
of FG-CNTRC thick plate examined by Zhu et al. [5] based
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on the first shear deformation theory and using the finite
element method. Buckling analysis of FG-CNTRC plates
subjected to various mechanical loads is investigated by Lei
et al. [6] according to First-order Shear Deformation Theory
(FSDT) and using element free KP-Ritz method. In another
investigation, Lei et al. [7] studied the free vibration analysis
of FG-CNTRC plates reinforced by SWCNTs based on the
FSDT and using element free KP-Ritz approach. Wang et al.
[8] presented a semi-analytical buckling and free vibration
analysis of FG-CNTRC plates based on the Classical Plate
Theory (CPT).

Recently, piezoelectric materials have attracted a
significant amount of attention from researchers due to
their electromechanical coupling. Wu et al. [9] analyzed
the free vibration of a circular Kirchhoff plate enclosed by
piezoelectric layers with open circuit condition analytically.
Farsangi et al. [10] presented an analytical solution for free
vibration analysis of a rectangular plate embedded with
piezoelectric layers, based on the FSDT and using the Levy
solution method. Kiani [11] analyzed the free vibration
behavior of FG-CNTRC plates with integrated piezoelectric
layers at the top and bottom surfaces, based on the FSDT and
Chebyshev-Ritz technique. The aero-thermo-elastic analysis
and active flutter control of FG-CNTRC panels using a
piezoelectric sensor and actuator based on Reddy’s third-
order shear deformation theory and assumed mode method
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Fig. 1. FG-CNTRC plate enclosed by piezoelectric layers in supersonic airflow a) per-
spective view, b) front view.

are studied by Zhang et al. [12]. In their investigation, they
optimized the area and location of piezoelectric patches
through the use of a genetic algorithm. Active vibration
control of FG-CNTRC rectangular plate integrated with
piezoelectric layers examined by Selim et al. [13] based on
Reddy’s shear deformation theory.

The aero-elastic characteristics of plates and shells are a
serious factor in the design of space re-entry vehicles, high-
speed aircraft, and modern engineering applications. In this
regard, many researchers have extensively studied the aero-
elastic properties of plates and shells. The influence of flow yaw
angle, temperature, and aerodynamic damping on supersonic
flutter of isotropic and composite plates are investigated by
Cheng et al. [14], based on Von-Karman’s large deflection
theory and using Finite Element Method (FEM). Navazi and
Haddadpour [15] researched the aero-thermo-elastic stability
analysis of panels made by Functionally Graded Material
(FGM), based on CPT and using Galerkin’s approach. The
static and dynamic stabilities of FGM panels subjected to
aero-thermo-elastic loading are investigated by Sohn and
Kim [16], based on FSDT in conjunction with nonlinear
von-Karman strain displacement and using FEM. Hosseini
and Fazelzadeh [17] analyzed the aero-thermo-elastic and
vibration behavior of FGM panels using nonlinear von-
Karman strain displacement as well as Galerkin’s method. A
review on the aero-elastic characteristics of FGM panel under
supersonic flow was presented by Marzocca et al. [18]. Song
and Li [19] analyzed the aero-thermo-elastic characteristics of
a supersonic panel flutter with different boundary conditions
based on CPT. Dynamic and static stability analysis of FG-
CNTRC plates subjected to supersonic airflow is studied by
Fazelzadeh et al. [20] according to CPT and using Galerkin’s
method. Song et al. [21] investigated the aero-elastic analysis
of FG-CNTRC plates in supersonic airflow based on the
HSDT and state-space Levy solution.

The goal of the current paper is to investigate the effect
of piezoelectric layer thickness on the aero-clastic behavior
of the FG-CNTRC plate embedded with piezoelectric

526

layers under supersonic airflow. The pressure induced
due to supersonic airflow is modeled by first-order piston
theory. Here, five different types of CNTs distribution in the
thickness direction are considered. The effective material
properties are evaluated by using the rule of mixture. The
variation of the electric potential across the piezoelectric
layer thickness is simulated through the use of a quadratic
function. It is supposed, the FG-CNTRC plate integrated
with piezoelectric layers is movable and simply supported
on all four edges, and two open and closed circuit electric
boundary condition of the piezoelectric layer are considered.
The coupled mechanical and electrical governing equations
are obtained based on the extended Hamilton’s principle
and Maxwell’s equation, respectively. Galerkin’s method is
applied to convert the coupled partial differential equations
into a set of ordinary differential equations. To check the
validity of the present research, the results are compared
with the available literature. The influence of CNTs volume
fraction, CNTs distribution patterns, different piezoelectric
material, piezoelectric thickness in both open and closed
circuit electric boundary conditions, and in-plane forces on
the dynamic and static boundary stabilities are elucidated.
Thus the novelties have been listed as:

Investigating the application of the piezoelectric layers on
the dynamic stability boundaries of FG-CNTRC plate

Investigating the application of the piezoelectric layers on
the static stability boundaries of the FG-CNTRC plate.

Investigating the application of the piezoelectric layers on
the critical frequency of the FG-CNTRC plate.

Investigating effects of the material piezoelectric layers
on the flutter stability boundaries of FG-CNTRC.

2- Model Strategy and Basic Equations
2- 1- Configuration of the physical system

The schematic of a rectangular FG-CNTRC plate which
is fully covered by piezoelectric layers on its top and bottom
surfaces is presented in Fig. 1. The origin coordinate system is
sitting on the mid-plane of the plates. The plate has the length
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Fig. 2. Distribution patterns of CNTs in the polymer matrix

a , width b | thickness / , and piezoelectric layer thickness
h, . The in-plane force N and N  are exerted to the
plate in the x and y direction, respectively. The supersonic
airflow is passed over the top surface of the plate with free
stream velocity U _ .

2- 2- Material properties of FG-CNTRC plates

The plate is made from a mixture of the polymer as a
matrix and SWCNTs as reinforcement. From Fig. 2, the CNTs
can be aligned as UD or functionally graded in the thickness
direction of the polymer matrix.

The effective material properties of the FG-CNTRC plate
are estimated by the rule of mixture [22]. Therefore, based on
the modified rule of mixture, the effective material properties
of the CNTRC plate are obtained as [4]:

E=nVenr E1C1NT +V,E" (@)

/. V%];]VTT" +V_m (b) (1)
E, E, E™"

M _Ver Vi ©

Glz GICZ'NT Gm

Where E ICINT and F 2CzNT are Young’s moduli of CNTs
in principle direction, and GICZNT indicates the shear
modulus of CNTs. Also, E,,, E,, and G, represent the
effective elastic moduli and shear moduli of CNTs reinforced
matrix, respectively. £” and G™ are the Young’s and
shear moduli of the isotropic polymer matrix, respectively.
Moreover 77, (i =12, 3) are the CNT efficiency parameter
where used to account for incompatibility in the load transfer
between the nanotube and polymeric phases [23], V', and
V oyr represent the volume fraction of matrix and CNTs of
a unitary volume, respectively, and the relation between them

is written as V', +V .y, =1. The mass density of CNTRC
plate is expressed as

pP=Vey PV, p" 2)

In which 0" and pCNT indicate the densities of matrix
and CNTs, respectively. Likewise, Poisson’s ratio is written as

* CNT

Vio =Veyr iy AV, V" va =V, E Ey 3)

where VICZNT and V" are the Poisson’s ratio of CNTs and
matrix, respectively, and VCNT is obtained as [24]

* a)CN T

WOy + (pCNT /p" )(1 — Weyr ) @)

VCN T —

In which, @, indicates the mass fraction of CNTs. The
volume fractions of the five distribution types of CNTs in the
polymer matrix are demonstrated as follows [20]

UD: Ve (2)=Vin (a)
FG-A: Ve (z)=(1—272jVC*NT (b)
FG-V: Vi, (z)= 1+ (©

° CNT h CNT (5)

FG-0: V., (z)=2[ —%ngw (@

Az .
FG-X: Ve (Z ) = TVCNT (e
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2- 3- Kinetic relations

According to the classical plate theory, the displacement
fields of an arbitrary point in the FG-CNTRC plates integrated
with piezoelectric layers are written as

ow
u, =u(x,y,t)-z -
6
u, =v(x,y,t)—zg, (6)

u, =w (x,y,t)

Where # and v are in-plane displacements in x and
y directions, respectively, and W is lateral displacement
of points on the mid-plane of the plate. The linear strain-
displacement relation for small deflection of the plate can be
given as

ou ow
E =——z —
o ox ox *
_Ov ow
&y = 5 -z W’ (7
_Ou  Ov 0w

Ve = ot =2z

oy ox ox Oy

2- 4- Electromechanical constitutive relations

Due to the orthotropic nature of CNTs, the stress-strain
relationship of FG-CNTRC plates can be expressed as
follows:

O-xx Qll Q12 0 8xx
O, (= 0, 0, 0 & )

o, 0 0 Ol |26,
Where,
0, = £, 0., =0, = VinEy
ne o > 12 277 >
ViaVar ViaVar
E
_ 2 _
sz = 1 5 Q66 —Glz
ViV

In which E£,, E,, are Young’s moduli in the principle
x and y directions, respectively, and G, is the shear
modulus in the x — ) plane, 1, and 1,, are the Poisson’s
ratio. In addition, the constitutive relation of transversely
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isotropic piezoelectric layers is given as [25]

O-X)C
Oy (=
O-xy
C:1'] :1'2 0 xx
n Cy 0 £,y 1~ ©)
0 0 1/2(C,-Cp,) |28
_0 0 e_31 Ex
0 0 e Ey
0 0 o|E
D) [0 0o 0]fe,
D i=[0 0 0fs, (-
D e, e, 0]|2¢
z 31 31 Xy (10)
2, O 0 E.
0 &, 0 Ey
0 s | LE,
In which,
— C? C?
Cllzcll_ﬁﬁ C12:C12_C_13a
33 33
2
= e
e, =e, ——2e. B.=E, 6 -2
31 31 C,, 33 33 33 C,,

Where E, and D, (i =x,y,z) are the electric
field and electric displacement in the piezoelectric layer,
respectively. Also, Cij, e; and =, (i,j =123
) represent the piezoelectric elastic moduli, piezoelectric
constant, and dielectric permittivity, respectively. The electric

field is written in terms of electric potential as:

oD oD oD
E. :——,Ey:——,Ezz—— (11)
ox o oz
Where @ indicates the electric potential of the

piezoelectric layer in the thickness direction. Here, two
common types of an open and closed circuits of piezoelectric
layers are considered. For pure piezoelectric plates, Lee and
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Lin [26] presented a sinusoidal variation of electric potential
in the thickness direction for the case when electrodes are
shortly connected. But for piezoelectric coupled plates a
quadratic function is used for both open and closed circuit
conditions. This quadratic variation of the electric potential in
the lateral direction was investigated by Wang et al. [9, 27].
When both sides major surface of the piezoelectric layers are
held at zero voltage (closed circuit), the variation of electric
potential represents as [27]:

2
Lkl
¢(X,y,f) 1- % 2 5
i
ﬁSZ Sﬁ+h
2 2 F
O(x,y,z,t)= (12)
2
Lk hy
¢(x9ynt) 1- h2 2 5
_r
2
—ﬁ—h <z S—ﬁ
2 7 2

Where ¢ indicates the electric potential in the neutral
surface of the piezoelectric layer. When the outer major
surface of piezoelectric layers is exposed to a low-permeability
environment such as vacuum or airflow, the environment is
performed as an electric insulation. Therefore, the electric
displacement vector (D ) in the perpendicular outer surface
of the piezoelectric layer will be zero, while the inner surface
of the piezoelectric layer (piezoelectric layer and CNTRC
plate interface) is short-circuited. The electric potential for
open circuit condition is defined below [9]:

/N

ow  ow
?JrWJ(h +h, )}(z —h),

O(x,y,z,t)=

(13)

2- 5- Modeling of solid-flow interaction
In this study, the first-order piston theory is applied for the

modeling of solid-flow interactions as follows [28]:
p.U’? (aw JMi-2 1 ow

— 14
mM?>-1\ox  M7-1U, th ()

Where U, M_ and p,_ indicate velocity, Mach
number, and density of airflow in the outer fluid boundary
layer, respectively.

AP =—

3- Governing Equations

Based on the extended Hamilton’s variation principle, the
following governing equations of FG-CNTRC plates with
piezoelectric layers are obtained as:

ON ON . ou Ow
2 o[ ] —— (@)
Ox oy ot Ox ot
ON, ON, o ow
—t—=1 -1, — (b)
ox oy ot oy ot
azMxx 2M yy azM XX (15)
=+ =+2 e
Ox oy Ox Oy
2 2. 2.
R, Zx—‘Z+RW gywz +AP :[°%+
(©)
Ou N o —I ow N o'w
"Woaxarr ovor?) \ox?or® oy lor?

Where AP is the supersonic airflow pressure. Also,
I,, I, and I, indicate the rotary inertial coefficient, and
expressed as

h

Lok l2)=]2%" p(1z,22)dz

P

(16)

Moreover, stress resultants N
expressed as

M (i,j=x,y)are

[/

N _,N_ ,N M

Xy 27ty

M

xy ?

xx 2 xx 2 Myy:

. (17
.[_ﬁ_h (o;x 30,,50,,,0,2,0,,Z,0,7 ) 4
2 7

Substituting the stress resultant (Eq. (17)) into Egs. (15),
the governing differential equations in terms of displacement
fields can be achieved as
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2, 2,
(4, +A”)gx +(c, +A66)2y +

(vlzB +A4,+C, +A6(,) 0% -
Ox Oy
3 3,
(v,B, +2C2)6_w2 ~A4, 8—W3 = (a)
Ox Oy Ox
Fu_, ow
ot loxar?

(B +4, )Syv +(C1+Ag6)7+

(2B, +4,, +C, +A66)a -

ow 3 ow _ (b)
oyox® oy’

& _, o

ot loyor?

o'w

ot

(vi,B,+2C,)

(18)

(A +D“)

o'w

(2v,B; + Dy, +D;, +4D, +4C3)6x2—6y2_

dw o du . o

ay4
o ou
(2C2 +VIZBZ)(M+ axay 3 J'F

R_@+ 0w 4’1( ¢ 6¢J+AP= ©

(By+Dy,)

Tox?r Yoy? ox? oy’
ow Su o
ly——+l| =5t 57|~
ot oxot® oyot
O'w O'w
12 2 2 + 2 2
Ox -0t oy“ot

The coefficients in Eqgs. (18) are given in Appendix A.
The mechanical edge boundary conditions are fully movable
simply supported (SSSS). In this regard, the mathematical
implementation of these edge boundary conditions can be
expressed as

N =ny =w =M _ =Mxy =0;
atx =0andx =a
(19)
Nyy :NXy =w :Myy :MXy =0;
aty =0andy =b
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3- 1- Maxwell equation

Noted that all of the electrical variables must satisfy the
Maxwell equation, which requires the following integration
across the thickness of the piezoelectric layers to be zero for
any x and y as[10]

L oD
ji h,,(an & D ]dz +

> ox oy Oz
(20)
] oD,
[ D, 2 Dy g
blm Ty &

Substituting Eq. (10) in conjunction with Egs. (7) and
(11) into above Maxwell’s equation and simplifying the result
gives

|8, ¢
M(@x +6yzj+

4 4 4
u 0 2 o'w 8w o
ox ox oy’ 8y

ow  ow
'u3(8x2+5‘y J 4¢ 0

This equation shows the coupling between mechanical and
electrical effects. For the open and closed circuit conditions,
coefficients f4,...,4, are depicted in Appendix A. The
boundary condition for ¢ in both closed and open circuits is
considered as follows [10]

¢(x=0,a;y)=¢(x;y=0,b)=0 (22)

3- 2- Dimensionless form of the governing equations
In order to parametric study, the following non-
dimensional parameter is utilized,

X y a

:—, :—’}/' :—,H :—’

=TT T
h

H =L r=t D°4,

P h o, ha

—_ Rxx a’ — Ryy a (23)

(4,+D,,)"  (4,+D)))

P pUza’ £,.a
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Where DO=1L is the flexural rigidity of the

2(1-v;
polymer matrix. 7-(Iere1n for a high Mach number, the
following simplification is applied [29],

4- Solution Procedure

Galerkin’s approach is applied to solve the governing
equations. In this technique, the displacement fields may
be expressed as a function of linear combinations of a finite
number of proper shape functions with time-dependent
vectors as follows

172

y7,

1/2
"3}

24

AM

u(&,n,7)=",(&1)q,(7),
v (&m)="(&n)q,(7)
w(&m.7)=",(&mn)q, (1),
#(&n.7)=";(5m)a,(7)

In which @ , @ , @, and @ 4 are the shape functions
and q,, q,, {q, and q, are the time-dependent vectors of
generalizing coordinates. The shape function must be chosen
so that satisfies both the mechanical and electrical boundary
conditions. Therefore, based on the boundary condition (Egs.
(19) and (22)) the shape functions for fully movable simply
supported edge boundary conditions can be written as

(25)

M

Y, (&m)= ZZcos(z 7&)sin (jmn),

i=1j=1

v ( = iz sin(i 7€ )cos (j 7n)
L (26)
8 = ZZ sin(i 78)sin (j 77),

i=lj

N

Ms

Y, (&)= sin(i 7€)sin (j 7n)

j=1

Il
—_

Substituting approximate displacement expressions (Eq.
(26) into Egs. (18) and (21), multiplying both sides of the
equations by shape functions and integrating over the whole
region, the discretized expressions for the equations of motion
are obtained as

[M]iq(z)+[Cla(r)+[K.]a(r)=0

27

531

Where q={qu »q, ,qw} is the overall vector of
generalized coordinates and M, C and K, are the mass
matrix, damping matrix, and reduced stiffness matrix of
the system, respectively. Therefore, the stiffness matrix is
expressed as

K, K, K; K,||q
Ky Kin Ky Kylja, =0
= (28)
K, K, K; Ky ||4,
Ky, K, K; Kyl
The above equation can be rewritten as:
K, q+K,q,=0
_nq 124, =Y 29)
K, q+K,q,=0
Where,
3 K, K, K;
K, =K, K, Ky
K; K; Ky
T
q=1{q, 4, 4.} »
= T
K, = [K14 K K34]
K, = [K41 K, K43]

Then, from Eq. (29), the reduced stiffness matrix is
obtained as follows

K

— i 1§
Ke Bl b 'Klz K 4 K21 (30)
4- 1- Dynamic Stability analysis
In order for dynamic stability analysis, Eq. (27) is

transformed into first-order state-space form as below [30]

2(2)=[A]2(7)

Where the state vector Z(z’) and state matrix [A] is
defined as

2(r)={a. 4"
W o

[M]'[K,]

€2))

[1]
-[M]'[c]

(32)
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In which [I] indicates the unitary matrix. To solve the
first-order, linear ordinary differential equation (Eq. (31)), the
simple exponential function of time can be considered

Z(7)=Xexp (Qr) (33)

Where QO and X indicate complex eigenvalue and
corresponding eigenvector, respectively. Substitution of this
expression into (Eq. 31) a standard eigenvalue problem is
achieved as follows

([A]-Q[1])Z(z)=0 (34)

Since the system is non-conservative, the eigenvalues are
complex quantities in general, i.e. Q= Re (Q) tilm (Q) It
should be noted that the real and imaginary parts of complex
eigenvalue indicate damping effects and natural frequency
of the dynamic system, respectively. The dynamic stability
region is specified owing to the sign of the real part of the
complex eigenvalue [31, 32].

4- 2- Static stability analysis
In static stability analysis, the derivative with respect to
time is neglected. Therefore, Eq. (27) is reduced as

[K.]a=0 (35)

For a nontrivial solution of the generalized coordinate
deflection, the determinant of K should be zero. Therefore,

det[K,]=0 (36)

Solving the above equation in terms of non-dimensional
in-plane force, the critical in-plane force is obtained. In
this state, the imaginary part of the complex eigenvalue
frequency is equal to zero, and the static stability region is
known according to the sign of the real part of the complex
eigenvalue.

5- Numerical Results and Discussion

In this section, the parametric study on the aero-elastic
characteristics of FG-CNTRC plates integrated with identical
piezoelectric layers on both top and bottom surfaces is taken
into account. In all numerical analyses, ten-mode numbers
have been considered. Unless otherwise mentioned, it is
assumed the FG-CNTRC plates are fully covered by the
PZT-4 piezoelectric layer; and the length-to-thickness ratio
is supposed to be 0.01 (4 /a=0.01), length to width
ratio is equal to 1 (#=1, square plate) and u/M _ =0.1
. Polymethyl-methacrylate (PMMA) is considered as the
polymer matrix, and SWCNTs (10,10) are selected as a
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reinforcement. Herein the effects of the piezoelectric layers,
CNTs distribution, and volume fraction on the static and
dynamic stability boundaries are investigated in detail. The
material properties of CNT and polymer matrix are taken as
[33]:

E™ =2.5Gpa, p" =1150Kg/m’,

EM =5.6466Tpa, v =0.175

EST =7.08Tpa,

G5 =1.9445Tpa, p“'" =1400Kg/m’

As reported by Han and Elliott [34], the CNT efficiency
parameter is an essential key in the rule of mixture for
determining the effective mechanical properties of the
nanocomposite. Therefore, to modify the rule of mixture,
the CNT efficiency parameter is achieved by matching the
mechanical properties obtained by the Molecular Dynamic
(MD) simulation and those calculated from the rule of
mixture. The value of the CNT efficiency parameter can be
considered as Ref. [33]. In this study, the numerical result
for different kinds of piezoelectric material properties is
evaluated. The values of piezoelectric material parameters
are depicted in Ref. [35].

To check the wvalidity of the present formulation, the
result of this study is compared with the available result in
the reported literature. In the first case study, the dynamic
stability boundary of an isotropic square plate (7=1
) is determined and compared with the results reported by
Dugundgi [36]. In this analytical investigation, Dugundgi
considered the rectangular plate has structural damping and
simply supported on all four edges (SSSS). Variation of the
critical aerodynamic pressure versus total structural damping
is depicted in Fig. 3. The result reveals a good agreement
between the present formulation and the result in Ref. [36].

The second comparative study is dedicated to close circuit
resonant frequencies of an FGM plate which is fully covered by
identical piezoelectric layers on both top and bottom surfaces.
Table 1 shows the presently computed non-dimensional
natural frequencies ( = wz’(a/h)\p, /E, )withthose
reported by Hasani Baferani et al. [37], for the piezoelectric
thickness ratio H , =, / h descending from 0.1 to 0. Itis
seen that the resonant frequency of the FGM plate integrated
with piezoelectric layers approaches that for the FGM plate
without piezoelectric layers as the piezoelectric thickness
ratio approaches zero for closed circuit condition.

Variations of the critical aerodynamic pressure and the
critical frequency of FG-CNTRC plates versus the non-
dimensional piezoelectric thickness H = are depicted in Fig.
4(a) and (b), respectively. In this figure, both open and closed
circuit conditions are considered and the other remaining
parameters are constant at VC*NT =0.12, r_= r, = 0.
It can be seen from Fig. 4(a) and (b), by increasing the non-
dimensional piezoelectric thickness, both critical acrodynamic
pressure and critical frequency increase smoothly. Thus, the
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Fig. 3. Comparison of non-dimensional critical aerodynamic pressure for an isotropic square plate

Table 1. Comparison between the result of the present model with those given by Hasani Baferani et
al. [37] for square simply supported FGM plate in closed circuit condition

Power index hp /h  method I8t ond 3rd
0.5 107! present 90.9301 227.0753 362.9216
1072 97.0020 242.3683 387.5710
107* 98.1228 245.1840 392.0977
98.1347 245.2139 392.1459
0 Ref. [37] 98.0136 245.3251 392.4425
Discrepancy (%) 0.12 0.04 0.07
1 107" present 83.7493 209.1161 334.1756
1072 87.5887 218.8385 349.9285
107 88.4175 220.9257 353.2928
88.4264 220.9482 353.3290
0 Ref. [37] 88.3093 221.0643 353.6252
Discrepancy (%) 0.13 0.05 0.08
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flutter occurred at a higher aerodynamic pressure and higher
critical frequency. This means that the influence of flexural
rigidity of piezoelectric layers dominates the effect of their
mass density [38]. It is inferred from Fig. 4(a) that, the FG-O
plate and FG-V plate have the highest and lowest dynamic
stable region, respectively. Because, the strengthening of
stiffness near the mid-plane of the FG-CNTRC plate is more
effective in rising the aero-elastic stability [12, 21]. Though,
Fig. 4(b) shows that the maximum and minimum values
of critical frequency belong to the FG-X plate and FG-O
plate, respectively. This is because, for FG-X distribution
of CNTs, the plate will be stiffer in bending mode vibration;
thus the critical frequency increased [5]. It may be further
concluded that the critical aerodynamic pressure and the
critical frequency in the state of the open circuit condition are
higher than in the closed circuit condition. Because, in open
circuit boundary condition the electric potential transforms
to mechanical energy during vibration, while closed-circuit
discharges the electric potential [39].

The effect of the different CNT volume fractions (VC*NT )
on the FG-V plate is shown in Fig. 5. In this figure, both open
and closed circuit conditions are considered and the other
parameters are fixed as 7, =7, = 0.1t can be seen from
Fig. 5(a), by increasing the CNT volume fraction, the stable
region decreases as long as increasing the non-dimensional
piezoelectric thickness. Though, Fig. 5(b) shows that by
increasing the CNT volume fraction, the critical frequency
rises as long as increasing the non-dimensional piezoelectric
thickness; because the plate will be stiffer.

The effect of the material piezoelectric layer on the
critical aerodynamic pressure and critical frequency of
the FG-V plate for close circuit conditions are depicted in
Fig. 6(a) and (b). In this figure, the parameters are fixed at
Vc*Nr =012, r, = ry = 0. The results show that material
piezoelectric layer PZT-6B and PZT-5H gives the largest and
lowest dynamic stable region.

Fig. 7(a) and (b), represent the variation of critical
aerodynamic pressure of a UD plate enclosed by piezoelectric
layers against non-dimensional in-plane forces in X and y
direction, respectively. In Fig 7(a) the parameters have the
value of H =0.05, r,, =0 and Veny =0.12. 1t can be
observed that, by increasing the non-dimensional in-plane
force in x direction, the critical aerodynamic pressure
decreases. Because the stiffness of the plate decreases by
applying the compressive in-plane force in Xx direction
[20]. Also, the critical acrodynamic pressure is raised by the
enhancement of non-dimensional piezoelectric thickness. The
influence of non-dimensional in-plane force in ) direction
on the critical aerodynamic pressure is depicted in Fig.
7(b). In this figure the parameters are fixed at H , =0.05
, 7., =0 and VC*NT =0.12. It is realized that the UD plate
integrated with piezoelectric layers gives a larger stable
region compared to a plate without piezoelectric layers.

Fig. 8(a) and (b) indicate the variation of the non-
dimensional critical in-plane force versus the non-
dimensional piezoelectric thickness in x and ) direction,
respectively. The FG-CNTRC plate enclosed by piezoelectric

layers in open and closed circuit conditions are considered.
In Fig. 8(a), the parameters have the value as A =0
, 7, =0 and V), =0.12. The results show that, with
the increase of non-dimensional piezoelectric thickness,
the critical non-dimensional in-plane force in x direction
increases. With regard to present non-dimensionalization,
the FG-O plate gives the largest static stability region with
respect to the other plate. The critical non-dimensional in-
plane force in open circuit condition is larger than the closed
circuit condition as mentioned before. Fig. 8(b) indicates the
variation of critical non-dimensional in-plane force in y

direction versus non-dimensional piezoelectric thickness.
In this figure the parameters are fixed at 4 =0, r, = 0
and VC*NT =0.12. It is observed that by increasing the
non-dimensional piezoelectric thickness, the critical non-
dimensional in-plane force in y direction (ryy ) increases.
According to the present non-dimensionalization, the results
exhibited that the FG-O plate gives the largest static stability
region compared to the other plates.

The effect of aerodynamic pressure on the static stability
(divergence) region of the UD plate is depicted in Fig. 9. It
can be observed that the static stability region is increased
by the enhancement of the non-dimensional aerodynamic
pressure.

6- Concluding Remarks

In this study, the stability analysis of FG-CNTRC plates
with surfaces fully covered by two identical piezoelectric
layers subjected to supersonic airflow was studied based on
Kirchhoff’s plate theory. The aerodynamic force exerted on
the top surface of the hybrid plate was simulated by employing
first-order piston theory. The mechanical and electrostatic
governing equations were obtained by using Hamilton’s
variation principle and Maxwell’s equation, respectively. It
was assumed the hybrid plate is movable simply supported
on all four edges. Variation of the electric potential across the
piezoelectric thickness was described by using a combination
of linear and quadratic functions. The close and open circuit
conditions were considered for the top and bottom surfaces
of piezoelectric layers. The coupled electromechanical
governing equations were discretized by applying Galerkin’s
approach. The obtained results from this formulation were
evaluated with available data in the literature. To analyze
the aero-elastic behavior, the influence of non-dimensional
piezoelectric thickness, kinds of piezoelectric materials,
electric boundary conditions of piezoelectric layers, CNT
volume fraction, and CNTs distribution patterns in the
polymer matrix on the stability boundaries were investigated.
The following main conclusion can be remarked:

By increasing non-dimensional piezoelectric thickness,
the critical aerodynamic pressure and critical frequency are
increased.

The aero-elastic behavior of both the FG-V plate and the
FG-A plate are exactly identical to each other.

Our results show that the FG-O plate and FG-V plate
include the largest and smallest critical acrodynamic pressure,
respectively.
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FG-X plate and FG-O plate give the largest and smallest
critical frequency, respectively. Because the FG-X plate is
stiffer than the FG-O plate in flexural vibration mode.

By increasing the CNT volume fraction as long as the
non-dimensional piezoelectric thickness is raised, the critical
aerodynamic pressure decreases, but the critical frequency is
increased.

The open circuit condition of the piezoelectric layer

Appendix A

h

= E
A A, A )=12 —1L
( v 3) IZ ViV

(l,z,zz)dz, (B B, B)

compared to the closed circuit condition gives the largest
dynamic and static stability region. Because, an open circuit
boundary condition transforms the electric potential during
vibration into mechanical energy, while a close circuit
discharges electric potential.

With the increase of non-dimensional piezoelectric
thickness, critical in-plane force is increased.

u -
(C1:C2>C3): %0 (1,2,22)61'2, ( 54 2I C11 Ci )dZ +I (A.1)
2
L L
P~ ~' NS ~" 2
(D).D,,)= 2jﬁ (Chy.Cp)z7dz +T,, (AuDye)=[7 " (C1 =Cpy) (122 )z
2 2
Also for close-circuit
4z h (A2)
¢ = L I'=I,=0
3
4 _ _ 16 = (A3)
H :ghp'zll’ =0, 1 :2e3lhp’ Hy :h_d'ss
P
And for open-circuit we have
8., (3h +h ok e2h (h+h )(2h+h (A.4)
6= 13( 3—}7), F1:2913,E_pa I, = 13p( E)( )
=33 =33
16 = _ 16 = (A.5)
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