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Stability Analysis of a Functionally Graded Carbon Nanotube Reinforced Composite 
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ABSTRACT: The dynamic and static instabilities of plates reinforced by carbon nanotubes which are 
fully covered by two piezoelectric layers subjected to supersonic airflow are investigated. For aero-elastic 
analysis of thin functionally graded carbon nanotube reinforced composite plate, classical plate theory, 
as well as first-order piston theory, has been applied. The effective material properties of functionally 
graded carbon nanotube-reinforced composite plates are evaluated based on the rule of mixture with 
consideration of efficiency parameter. Also, five various types of carbon nanotube distributions through 
the thickness direction are investigated. The distribution of electric potential across the piezoelectric 
thickness is assumed to be a quadratic function. Then, two kinds of electric boundary conditions such 
as open circuit and closed circuit are considered. The coupled governing electro-mechanical equations 
are derived by using Hamilton’s variation principle and electrostatic Maxwell’s equation. The partial 
differential governing equations are transformed into a set of ordinary differential equations by utilizing 
Galerkin’s approach. The result shows that the functionally graded carbon nanotube-reinforced composite 
plate integrated by two piezoelectric layers in open circuit condition has higher both flutter aerodynamic 
pressure and natural frequencies, in contrast with a similar plate in closed circuit conditions. In addition, 
the result elucidated that the stability region increase as the piezoelectric thickness increases.
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1- Introduction
Nowadays, Carbon Nanotubes (CNTs) are well known 

for their special properties such as high elastic modulus, high 
tensile strange, and high stiffness. Then, for the sake of the 
extraordinary physical and mechanical properties of CNTs, 
they have become a promising candidate for the reinforcement 
of nanocomposites [1, 2]. Nanocomposites are composed of 
the polymer matrix and CNTs as a reinforcement. As reported 
by Hu et al. [3], the mechanical properties of carbon nanotube-
reinforced composites are noticeably improved by adding 
the CNTs even at very low volume fractions in the polymer 
matrix. The distribution of CNTs in the polymer matrix may 
be Functionally Graded (FG) or Uniformly Distributed (UD). 
Therefore, the material properties vary continuously from 
one surface to the other. Up to now, a large body of literature 
has investigated the mechanical behaviors of Functionally 
Graded CNT Reinforced Composite (FG-CNTRC) plates 
and shells. The study on the nonlinear bending of simply 
supported FG-CNTRC plate which reinforced by Single-
Walled Carbon Nanotubes (SWCNTs) under transverse load 
in the thermal environment is performed by Shen [4] based 
on the Higher-order Shear Deformation Theory (HSDT) 
and using perturbation technique. Static and free vibration 
of FG-CNTRC thick plate examined by Zhu et al. [5] based 

on the first shear deformation theory and using the finite 
element method.  Buckling analysis of FG-CNTRC plates 
subjected to various mechanical loads is investigated by Lei 
et al. [6] according to First-order Shear Deformation Theory 
(FSDT) and using element free KP-Ritz method. In another 
investigation, Lei et al. [7] studied the free vibration analysis 
of FG-CNTRC plates reinforced by SWCNTs based on the 
FSDT and using element free KP-Ritz approach. Wang et al. 
[8] presented a semi-analytical buckling and free vibration 
analysis of FG-CNTRC plates based on the Classical Plate 
Theory (CPT). 

Recently, piezoelectric materials have attracted a 
significant amount of attention from researchers due to 
their electromechanical coupling. Wu et al. [9] analyzed 
the free vibration of a circular Kirchhoff plate enclosed by 
piezoelectric layers with open circuit condition analytically. 
Farsangi et al. [10] presented an analytical solution for free 
vibration analysis of a rectangular plate embedded with 
piezoelectric layers, based on the FSDT and using the Levy 
solution method. Kiani [11] analyzed the free vibration 
behavior of FG-CNTRC plates with integrated piezoelectric 
layers at the top and bottom surfaces, based on the FSDT and 
Chebyshev-Ritz technique. The aero-thermo-elastic analysis 
and active flutter control of FG-CNTRC panels using a 
piezoelectric sensor and actuator based on Reddy’s third-
order shear deformation theory and assumed mode method *Corresponding author’s email: hosseini@sirjantech.ac.ir
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are studied by Zhang et al. [12]. In their investigation, they 
optimized the area and location of piezoelectric patches 
through the use of a genetic algorithm. Active vibration 
control of FG-CNTRC rectangular plate integrated with 
piezoelectric layers examined by Selim et al. [13] based on 
Reddy’s shear deformation theory.

The aero-elastic characteristics of plates and shells are a 
serious factor in the design of space re-entry vehicles, high-
speed aircraft, and modern engineering applications. In this 
regard, many researchers have extensively studied the aero-
elastic properties of plates and shells. The influence of flow yaw 
angle, temperature, and aerodynamic damping on supersonic 
flutter of isotropic and composite plates are investigated by 
Cheng et al. [14], based on Von-Karman’s large deflection 
theory and using Finite Element Method (FEM). Navazi and 
Haddadpour [15] researched the aero-thermo-elastic stability 
analysis of panels made by Functionally Graded Material 
(FGM), based on CPT and using Galerkin’s approach. The 
static and dynamic stabilities of FGM panels subjected to 
aero-thermo-elastic loading are investigated by Sohn and 
Kim [16], based on FSDT in conjunction with nonlinear 
von-Karman strain displacement and using FEM. Hosseini 
and Fazelzadeh [17] analyzed the aero-thermo-elastic and 
vibration behavior of FGM panels using nonlinear von-
Karman strain displacement as well as Galerkin’s method. A 
review on the aero-elastic characteristics of FGM panel under 
supersonic flow was presented by Marzocca et al. [18]. Song 
and Li [19] analyzed the aero-thermo-elastic characteristics of 
a supersonic panel flutter with different boundary conditions 
based on CPT. Dynamic and static stability analysis of FG-
CNTRC plates subjected to supersonic airflow is studied by 
Fazelzadeh et al. [20] according to CPT and using Galerkin’s 
method. Song et al. [21] investigated the aero-elastic analysis 
of FG-CNTRC plates in supersonic airflow based on the 
HSDT and state-space Levy solution.

The goal of the current paper is to investigate the effect 
of piezoelectric layer thickness on the aero-elastic behavior 
of the FG-CNTRC plate embedded with piezoelectric 

layers under supersonic airflow. The pressure induced 
due to supersonic airflow is modeled by first-order piston 
theory. Here, five different types of CNTs distribution in the 
thickness direction are considered. The effective material 
properties are evaluated by using the rule of mixture. The 
variation of the electric potential across the piezoelectric 
layer thickness is simulated through the use of a quadratic 
function. It is supposed, the FG-CNTRC plate integrated 
with piezoelectric layers is movable and simply supported 
on all four edges, and two open and closed circuit electric 
boundary condition of the piezoelectric layer are considered. 
The coupled mechanical and electrical governing equations 
are obtained based on the extended Hamilton’s principle 
and Maxwell’s equation, respectively. Galerkin’s method is 
applied to convert the coupled partial differential equations 
into a set of ordinary differential equations. To check the 
validity of the present research, the results are compared 
with the available literature. The influence of CNTs volume 
fraction, CNTs distribution patterns, different piezoelectric 
material, piezoelectric thickness in both open and closed 
circuit electric boundary conditions, and in-plane forces on 
the dynamic and static boundary stabilities are elucidated. 
Thus the novelties have been listed as:

Investigating the application of the piezoelectric layers on 
the dynamic stability boundaries of FG-CNTRC plate 

Investigating the application of the piezoelectric layers on 
the static stability boundaries of the FG-CNTRC plate.

Investigating the application of the piezoelectric layers on 
the critical frequency of the FG-CNTRC plate.

Investigating effects of the material piezoelectric layers 
on the flutter stability boundaries of FG-CNTRC.

2- Model Strategy and Basic Equations
2- 1- Configuration of the physical system

The schematic of a rectangular FG-CNTRC plate which 
is fully covered by piezoelectric layers on its top and bottom 
surfaces is presented in Fig. 1. The origin coordinate system is 
sitting on the mid-plane of the plates. The plate has the length 

 

 

Fig. 1.  FG-CNTRC plate enclosed by piezoelectric layers in supersonic airflow a) perspective view, b) front view.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. FG-CNTRC plate enclosed by piezoelectric layers in supersonic airflow a) per-
spective view, b) front view.
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a , width b , thickness h , and piezoelectric layer thickness 
ph . The in-plane force xxN and yyN are exerted to the 

plate in the x and y direction, respectively. The supersonic 
airflow is passed over the top surface of the plate with free 
stream velocity U ∞ .

2- 2- Material properties of FG-CNTRC plates
The plate is made from a mixture of the polymer as a 

matrix and SWCNTs as reinforcement. From Fig. 2, the CNTs 
can be aligned as UD or functionally graded in the thickness 
direction of the polymer matrix. 

The effective material properties of the FG-CNTRC plate 
are estimated by the rule of mixture [22]. Therefore, based on 
the modified rule of mixture, the effective material properties 
of the CNTRC plate are obtained as [4]:
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Where 11
CNTE and 22

CNTE are Young’s moduli of CNTs 
in principle direction, and  12

CNTG indicates the shear 
modulus of CNTs. Also, 11E , 22E  and 12G  represent the 
effective elastic moduli and shear moduli of CNTs reinforced 
matrix, respectively. mE  and mG  are the Young’s and 
shear moduli of the isotropic polymer matrix, respectively. 
Moreover ( ) 1, 2,3i iη =  are the CNT efficiency parameter 
where used to account for incompatibility in the load transfer 
between the nanotube and polymeric phases [23], mV  and 

CNTV  represent the volume fraction of matrix and CNTs of 
a unitary volume, respectively, and the relation between them 

is written as 1m CNTV V+ = . The mass density of CNTRC 
plate is expressed as
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In which mρ  and CNTρ indicate the densities of matrix 
and CNTs, respectively. Likewise, Poisson’s ratio is written as
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where 12
CNTν  and mν  are the Poisson’s ratio of CNTs and 

matrix, respectively, and *
CNTV  is obtained as [24]
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In which, CNTω  indicates the mass fraction of CNTs. The 
volume fractions of the five distribution types of CNTs in the 
polymer matrix are demonstrated as follows [20]
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Fig. 2. Distribution patterns of CNTs in the polymer matrix  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Distribution patterns of CNTs in the polymer matrix
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2- 3- Kinetic relations
According to the classical plate theory, the displacement 

fields of an arbitrary point in the FG-CNTRC plates integrated 
with piezoelectric layers are written as

 

 

 

, ,  ,    

, ,  ,    

, ,

x

y

z

wu u x y t z
x
wu v x y t z
y

u w x y t


 




 




 (6) 

 

 

2

2

2

2

2

,   

,   

2

xx

yy

xy

u wz
x x
v wz
y y
u v wz
y x x y







 
 
 
 

 
 

  
  
   

 (7) 

 

11 12

12 22

66

0
0

0 0 2

xx xx

yy yy

xy xy

Q Q
Q Q

Q

 
 
 

     
          

          

 (8) 

 

11 12 22
11 12 21

12 21 12 21

22
22 66 12

12 21

,     ,       
1 1

,       
1

E EQ Q Q

EQ Q G


   

 

  
 

 


  

 

   (6)

Where u  and v  are in-plane displacements in x  and 
y  directions, respectively, and w  is lateral displacement 

of points on the mid-plane of the plate. The linear strain-
displacement relation for small deflection of the plate can be 
given as
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2- 4- Electromechanical constitutive relations
Due to the orthotropic nature of CNTs, the stress-strain 

relationship of FG-CNTRC plates can be expressed as 
follows:
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Where,
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 In which 11E , 22E  are Young’s moduli in the principle 
x  and y  directions, respectively, and 12G  is the shear 
modulus in the x y− plane, 12í  and 21í  are the Poisson’s 
ratio. In addition, the constitutive relation of transversely 

isotropic piezoelectric layers is given as [25]
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Where iE  and iD  ( , ,i x y z= ) are the electric 
field and electric displacement in the piezoelectric layer, 
respectively. Also, ijC , ije  and ijΞ  ( , 1, 2, 3i j =
) represent the piezoelectric elastic moduli, piezoelectric 
constant, and dielectric permittivity, respectively. The electric 
field is written in terms of electric potential as:
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Where Φ  indicates the electric potential of the 
piezoelectric layer in the thickness direction. Here, two 
common types of an open and closed circuits of piezoelectric 
layers are considered. For pure piezoelectric plates, Lee and 
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Lin [26] presented a sinusoidal variation of electric potential 
in the thickness direction for the case when electrodes are 
shortly connected. But for piezoelectric coupled plates a 
quadratic function is used for both open and closed circuit 
conditions. This quadratic variation of the electric potential in 
the lateral direction was investigated by  Wang et al. [9, 27]. 
When both sides major surface of the piezoelectric layers are 
held at zero voltage (closed circuit), the variation of electric 
potential represents as [27]:
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Where φ  indicates the electric potential in the neutral 
surface of the piezoelectric layer. When the outer major 
surface of piezoelectric layers is exposed to a low-permeability 
environment such as vacuum or airflow, the environment is 
performed as an electric insulation. Therefore, the electric 
displacement vector ( ) zD in the perpendicular outer surface 
of the piezoelectric layer will be zero, while the inner surface 
of the piezoelectric layer (piezoelectric layer and CNTRC 
plate interface) is short-circuited. The electric potential for 
open circuit condition is defined below [9]:
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2- 5- Modeling of solid-flow interaction
In this study, the first-order piston theory is applied for the 

modeling of solid-flow interactions as follows [28]:
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Where U ∞ , M∞  and ρ∞  indicate velocity, Mach 
number, and density of airflow in the outer fluid boundary 
layer, respectively. 

3- Governing Equations
Based on the extended Hamilton’s variation principle, the 

following governing equations of FG-CNTRC plates with 
piezoelectric layers are obtained as:
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Where P∆  is the supersonic airflow pressure. Also, 
0I , 1I  and 2I  indicate the rotary inertial coefficient, and 

expressed as
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Moreover, stress resultants ,  ( , ,ij ijN M i j x y= ) are 
expressed as

15 

2 3

0 12 2
xyxx NN u wI I

x y t x t
  

  
    

 (a) 

2 3

0 12 2
xy yyN N v wI I

x y t y t
   

  
    

 (b) 

22 2

2 2

2 2 2

02 2 2

3 3 4 4

1 22 2 2 2 2 2

2yyxx xx

xx yy

MM M
x y x y

w w wR R P I
x y t

u v w wI I
x t y t x t y t

 
  

   

  
   

  

      
               

 

 

(c) 

 

   22
0 1 2

2

, ,  1, ,p

p

h h

h h
I I I z z dz



 
   (16) 

 

 2

2

, , , , , 

, , , , , p

p

xx xy yy xx xy yy

h h

h xx xy yy xx xy yyh

N N N M M M

z z z dz     


 




 (17) 

 

 

 

 

 

 

 

 

 

 

 

(17)

Substituting the stress resultant (Eq. (17)) into Eqs. (15), 
the governing differential equations in terms of displacement 
fields can be achieved as 
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The coefficients in Eqs. (18) are given in Appendix A. 
The mechanical edge boundary conditions are fully movable 
simply supported (SSSS). In this regard, the mathematical 
implementation of these edge boundary conditions can be 
expressed as
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3- 1- Maxwell equation
Noted that all of the electrical variables must satisfy the 

Maxwell equation, which requires the following integration 
across the thickness of the piezoelectric layers to be zero for 
any x  and y  as [10]
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Substituting Eq. (10) in conjunction with Eqs. (7) and 
(11) into above Maxwell’s equation and simplifying the result 
gives
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This equation shows the coupling between mechanical and 
electrical effects. For the open and closed circuit conditions, 
coefficients 1 4, , µ µ…  are depicted in Appendix A. The 
boundary condition for φ  in both closed and open circuits is 
considered as follows [10]
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3- 2- Dimensionless form of the governing equations

In order to parametric study, the following non-
dimensional parameter is utilized, 
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Where 
( )0 212 1

m

m

ED
ν

=
−

 is the flexural rigidity of the 

polymer matrix. Herein, for a high Mach number, the 
following simplification is applied [29],
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4- Solution Procedure
Galerkin’s approach is applied to solve the governing 

equations. In this technique, the displacement fields may 
be expressed as a function of linear combinations of a finite 
number of proper shape functions with time-dependent 
vectors as follows
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In which uØ , vØ , wØ  and φØ  are the shape functions 
and uq , vq , wq  and φq  are the time-dependent vectors of 
generalizing coordinates. The shape function must be chosen 
so that satisfies both the mechanical and electrical boundary 
conditions. Therefore, based on the boundary condition (Eqs. 
(19) and (22)) the shape functions for fully movable simply 
supported edge boundary conditions can be written as 
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Substituting approximate displacement expressions (Eq. 
(26) into Eqs. (18) and (21), multiplying both sides of the 
equations by shape functions and integrating over the whole 
region, the discretized expressions for the equations of motion 
are obtained as 
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Where { }u v wq = q  , q  , q  is the overall vector of 
generalized coordinates and M , C  and eK  are the mass 
matrix, damping matrix, and reduced stiffness matrix of 
the system, respectively. Therefore, the stiffness matrix is 
expressed as
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The above equation can be rewritten as: 
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Where, 
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Then, from Eq. (29), the reduced stiffness matrix is 
obtained as follows
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4- 1- Dynamic Stability analysis
In order for dynamic stability analysis, Eq. (27) is 

transformed into first-order state-space form as below [30]
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Where the state vector ( )τZ  and state matrix [ ]A  is 
defined as
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In which [ ]I  indicates the unitary matrix. To solve the 
first-order, linear ordinary differential equation (Eq. (31)), the 
simple exponential function of time can be considered
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Where Ω  and X   indicate complex eigenvalue and 
corresponding eigenvector, respectively. Substitution of this 
expression into (Eq. 31) a standard eigenvalue problem is 
achieved as follows
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Since the system is non-conservative, the eigenvalues are 
complex quantities in general, i.e. ( ) ( )Re iIm ΩΩ = Ω ± . It 
should be noted that the real and imaginary parts of complex 
eigenvalue indicate damping effects and natural frequency 
of the dynamic system, respectively. The dynamic stability 
region is specified owing to the sign of the real part of the 
complex eigenvalue [31, 32]. 

4- 2- Static stability analysis
In static stability analysis, the derivative with respect to 

time is neglected. Therefore, Eq. (27) is reduced as
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For a nontrivial solution of the generalized coordinate 
deflection, the determinant of eK  should be zero. Therefore,
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Solving the above equation in terms of non-dimensional 
in-plane force, the critical in-plane force is obtained. In 
this state, the imaginary part of the complex eigenvalue 
frequency is equal to zero, and the static stability region is 
known according to the sign of the real part of the complex 
eigenvalue. 

5- Numerical Results and Discussion
In this section, the parametric study on the aero-elastic 

characteristics of FG-CNTRC plates integrated with identical 
piezoelectric layers on both top and bottom surfaces is taken 
into account.  In all numerical analyses, ten-mode numbers 
have been considered. Unless otherwise mentioned, it is 
assumed the FG-CNTRC plates are fully covered by the 
PZT-4 piezoelectric layer; and the length-to-thickness ratio 
is supposed to be 0.01 ( / 0.01h a = ), length to width 
ratio is equal to 1 ( =1r , square plate) and / 0.1Mµ ∞ =
. Polymethyl-methacrylate (PMMA) is considered as the 
polymer matrix, and SWCNTs (10,10) are selected as a 

reinforcement. Herein the effects of the piezoelectric layers, 
CNTs distribution, and volume fraction on the static and 
dynamic stability boundaries are investigated in detail. The 
material properties of CNT and polymer matrix are taken as 
[33]:
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As reported by Han and Elliott [34], the CNT efficiency 
parameter is an essential key in the rule of mixture for 
determining the effective mechanical properties of the 
nanocomposite. Therefore, to modify the rule of mixture, 
the CNT efficiency parameter is achieved by matching the 
mechanical properties obtained by the Molecular Dynamic 
(MD) simulation and those calculated from the rule of 
mixture. The value of the CNT efficiency parameter can be 
considered as Ref. [33]. In this study, the numerical result 
for different kinds of piezoelectric material properties is 
evaluated. The values of piezoelectric material parameters 
are depicted in Ref. [35].

To check the validity of the present formulation, the 
result of this study is compared with the available result in 
the reported literature.  In the first case study, the dynamic 
stability boundary of an isotropic square plate ( =1r
) is determined and compared with the results reported by 
Dugundgi [36]. In this analytical investigation, Dugundgi 
considered the rectangular plate has structural damping and 
simply supported on all four edges (SSSS). Variation of the 
critical aerodynamic pressure versus total structural damping 
is depicted in Fig. 3. The result reveals a good agreement 
between the present formulation and the result in Ref. [36].  

The second comparative study is dedicated to close circuit 
resonant frequencies of an FGM plate which is fully covered by 
identical piezoelectric layers on both top and bottom surfaces. 
Table 1 shows the presently computed non-dimensional 
natural frequencies ( ( )2 / /   m ma h Eβ ωπ ρ=  ) with those 
reported by Hasani Baferani et al. [37], for the piezoelectric 
thickness ratio /p pH h h=  descending from 0.1  to 0 . It is 
seen that the resonant frequency of the FGM plate integrated 
with piezoelectric layers approaches that for the FGM plate 
without piezoelectric layers as the piezoelectric thickness 
ratio approaches zero for closed circuit condition.

Variations of the critical aerodynamic pressure and the 
critical frequency of FG-CNTRC plates versus the non-
dimensional piezoelectric thickness pH  are depicted in Fig. 
4(a) and (b), respectively. In this figure, both open and closed 
circuit conditions are considered and the other remaining 
parameters are constant at * 0.12CNTV = ,  0xx yyr r= = . 
It can be seen from Fig. 4(a) and (b), by increasing the non-
dimensional piezoelectric thickness, both critical aerodynamic 
pressure and critical frequency increase smoothly. Thus, the 
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Fig. 3. Comparison of non-dimensional critical aerodynamic pressure for an isotropic square plate  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparison of non-dimensional critical aerodynamic pressure for an isotropic square plate

Table 1. Comparison between the result of the present model with those given by Hasani Baferani et 
al. [37] for square simply supported FGM plate in closed circuit condition

Table 1. Comparison between the result of the present model with those given by Hasani 

Baferani et al. [37] for square simply supported FGM plate in closed circuit condition 

Power index  /ph h  method 1st 2nd 3rd 

0.5 110  present 90.9301 227.0753 362.9216 

210  97.0020 242.3683 387.5710 

410  98.1228 245.1840 392.0977 

0  
98.1347 245.2139 392.1459 

Ref. [37] 98.0136 245.3251 392.4425 

 Discrepancy (%) 0.12 0.04 0.07 

1 110  present 83.7493 209.1161 334.1756 

210  87.5887 218.8385 349.9285 

410  88.4175 220.9257 353.2928 

0  
88.4264 220.9482 353.3290 

Ref. [37] 88.3093 221.0643 353.6252 

 Discrepancy (%) 0.13 0.05 0.08 
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Fig. 4. Influence of non-dimensional piezoelectric thickness on the 

dynamic stability of various FG-CNTRC plates in close and open 

circuit conditions of piezoelectric layers; (a) Non-dimensional 

critical aerodynamic pressure and (b) Non-dimensional critical 

frequency.  
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Fig. 4. Influence of non-dimensional piezoelectric thickness on the dynamic stability of various FG-
CNTRC plates in close and open circuit conditions of piezoelectric layers; (a) Non-dimensional critical 

aerodynamic pressure and (b) Non-dimensional critical frequency. 
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flutter occurred at a higher aerodynamic pressure and higher 
critical frequency. This means that the influence of flexural 
rigidity of piezoelectric layers dominates the effect of their 
mass density [38]. It is inferred from Fig. 4(a) that, the FG-O 
plate and FG-V plate have the highest and lowest dynamic 
stable region, respectively. Because, the strengthening of 
stiffness near the mid-plane of the FG-CNTRC plate is more 
effective in rising the aero-elastic stability [12, 21]. Though, 
Fig. 4(b) shows that the maximum and minimum values 
of critical frequency belong to the FG-X plate and FG-O 
plate, respectively. This is because, for FG-X distribution 
of CNTs, the plate will be stiffer in bending mode vibration; 
thus the critical frequency increased [5]. It may be further 
concluded that the critical aerodynamic pressure and the 
critical frequency in the state of the open circuit condition are 
higher than in the closed circuit condition. Because, in open 
circuit boundary condition the electric potential transforms 
to mechanical energy during vibration, while closed-circuit 
discharges the electric potential [39].

The effect of the different CNT volume fractions ( *
CNTV ) 

on the FG-V plate is shown in Fig. 5. In this figure, both open 
and closed circuit conditions are considered and the other 
parameters are fixed as 0xx yyr r= = . It can be seen from 
Fig. 5(a), by increasing the CNT volume fraction, the stable 
region decreases as long as increasing the non-dimensional 
piezoelectric thickness. Though, Fig. 5(b) shows that by 
increasing the CNT volume fraction, the critical frequency 
rises as long as increasing the non-dimensional piezoelectric 
thickness; because the plate will be stiffer. 

The effect of the material piezoelectric layer on the 
critical aerodynamic pressure and critical frequency of 
the FG-V plate for close circuit conditions are depicted in 
Fig. 6(a) and (b). In this figure, the parameters are fixed at 

* 0.12CNTV = ,  0xx yyr r= = . The results show that material 
piezoelectric layer PZT-6B and PZT-5H gives the largest and 
lowest dynamic stable region. 

Fig. 7(a) and (b), represent the variation of critical 
aerodynamic pressure of a UD plate enclosed by piezoelectric 
layers against non-dimensional in-plane forces in x  and y  
direction, respectively. In Fig 7(a) the parameters have the 
value of 0.05pH = , 0yyr =  and * 0.12CNTV = . It can be 
observed that, by increasing the non-dimensional in-plane 
force in x  direction, the critical aerodynamic pressure 
decreases. Because the stiffness of the plate decreases by 
applying the compressive in-plane force in x direction 
[20]. Also, the critical aerodynamic pressure is raised by the 
enhancement of non-dimensional piezoelectric thickness. The 
influence of non-dimensional in-plane force in y  direction 
on the critical aerodynamic pressure is depicted in Fig. 
7(b). In this figure the parameters are fixed at 0.05pH =
, 0xxr =  and * 0.12CNTV = . It is realized that the UD plate 
integrated with piezoelectric layers gives a larger stable 
region compared to a plate without piezoelectric layers.

Fig. 8(a) and (b) indicate the variation of the non-
dimensional critical in-plane force versus the non-
dimensional piezoelectric thickness in x  and y  direction, 
respectively. The FG-CNTRC plate enclosed by piezoelectric 

layers in open and closed circuit conditions are considered. 
In Fig. 8(a), the parameters have the value as 0λ =
, 0yyr =  and * 0.12CNTV = . The results show that, with 
the increase of non-dimensional piezoelectric thickness, 
the critical non-dimensional in-plane force in x  direction 
increases. With regard to present non-dimensionalization, 
the FG-O plate gives the largest static stability region with 
respect to the other plate. The critical non-dimensional in-
plane force in open circuit condition is larger than the closed 
circuit condition as mentioned before. Fig. 8(b) indicates the 
variation of critical non-dimensional in-plane force in y  
direction versus non-dimensional piezoelectric thickness. 
In this figure the parameters are fixed at 0λ = , 0yyr =  
and * 0.12CNTV = . It is observed that by increasing the 
non-dimensional piezoelectric thickness, the critical non-
dimensional in-plane force in y  direction ( yyr ) increases. 
According to the present non-dimensionalization, the results 
exhibited that the FG-O plate gives the largest static stability 
region compared to the other plates. 

The effect of aerodynamic pressure on the static stability 
(divergence) region of the UD plate is depicted in Fig. 9. It 
can be observed that the static stability region is increased 
by the enhancement of the non-dimensional aerodynamic 
pressure. 

6- Concluding Remarks
In this study, the stability analysis of FG-CNTRC plates 

with surfaces fully covered by two identical piezoelectric 
layers subjected to supersonic airflow was studied based on 
Kirchhoff’s plate theory. The aerodynamic force exerted on 
the top surface of the hybrid plate was simulated by employing 
first-order piston theory. The mechanical and electrostatic 
governing equations were obtained by using Hamilton’s 
variation principle and Maxwell’s equation, respectively. It 
was assumed the hybrid plate is movable simply supported 
on all four edges. Variation of the electric potential across the 
piezoelectric thickness was described by using a combination 
of linear and quadratic functions. The close and open circuit 
conditions were considered for the top and bottom surfaces 
of piezoelectric layers. The coupled electromechanical 
governing equations were discretized by applying Galerkin’s 
approach. The obtained results from this formulation were 
evaluated with available data in the literature. To analyze 
the aero-elastic behavior, the influence of non-dimensional 
piezoelectric thickness, kinds of piezoelectric materials, 
electric boundary conditions of piezoelectric layers, CNT 
volume fraction, and CNTs distribution patterns in the 
polymer matrix on the stability boundaries were investigated. 
The following main conclusion can be remarked:     

By increasing non-dimensional piezoelectric thickness, 
the critical aerodynamic pressure and critical frequency are 
increased. 

The aero-elastic behavior of both the FG-V plate and the 
FG-A plate are exactly identical to each other.  

Our results show that the FG-O plate and FG-V plate 
include the largest and smallest critical aerodynamic pressure, 
respectively.
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Fig. 5. Variation of (a) Non-dimensional critical aerodynamic pressure and (b) Non-dimensional critical frequency of 

FG-V plate versus the non-dimensional piezoelectric thickness for three values of *
CNTV . 
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Fig. 5. Variation of (a) Non-dimensional critical aerodynamic pressure and (b) Non-dimensional critical 

frequency of FG-V plate versus the non-dimensional piezoelectric thickness for three values of  *
CNTV .
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Fig. 6. Influence of various piezoelectric materials on the dynamic 

stability of FG-V plate in closed circuit condition of the piezoelectric 

layer; (a) Non-dimensional critical aerodynamic pressure and (b) Non-

dimensional critical frequency. 
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Fig. 6. Influence of various piezoelectric materials on the dynamic stability of FG-V plate in closed circuit 
condition of the piezoelectric layer; (a) Non-dimensional critical aerodynamic pressure and (b) Non-

dimensional critical frequency.
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Fig. 7. Effect of non-dimensional in-plane force on the stability boundaries of UD plate enclosed by piezoelectric layers; 

(a) Non-dimensional in-plane force in x  direction and (b) Non-dimensional in-plane force in y  direction. 
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Fig. 7. Effect of non-dimensional in-plane force on the stability boundaries of UD plate enclosed by piezo-
electric layers; (a) Non-dimensional in-plane force in x  direction and (b) Non-dimensional in-plane force 

in y  direction.
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Fig. 8. Effect of non-dimensional piezoelectric thickness on the static 

stability boundary of FG-CNTRC plate integrated with piezoelectric  
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Fig. 8. Effect of non-dimensional piezoelectric thickness on the static stability boundary of FG-CNTRC 
plate integrated with piezoelectric layers for 0λ =  ; (a) Critical non-dimensional in-plane force in x di-

rection and (b) Critical non-dimensional in-plane force in y direction.
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Fig. 9. Variation of critical in-plane force versus the non-dimensional piezoelectric thickness of UD plate enclosed by 

piezoelectric layers for various aerodynamic pressure; (a) Critical non-dimensional in-plane force in x  direction and 

(b) Critical non-dimensional in-plane force in y  direction. 

 

a) 

b) 

Fig. 9. Variation of critical in-plane force versus the non-dimensional piezoelectric thickness of UD plate 
enclosed by piezoelectric layers for various aerodynamic pressure; (a) Critical non-dimensional in-plane 

force in x direction and (b) Critical non-dimensional in-plane force in y direction.
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FG-X plate and FG-O plate give the largest and smallest 
critical frequency, respectively. Because the FG-X plate is 
stiffer than the FG-O plate in flexural vibration mode.

By increasing the CNT volume fraction as long as the 
non-dimensional piezoelectric thickness is raised, the critical 
aerodynamic pressure decreases, but the critical frequency is 
increased.  

The open circuit condition of the piezoelectric layer 

compared to the closed circuit condition gives the largest 
dynamic and static stability region. Because, an open circuit 
boundary condition transforms the electric potential during 
vibration into mechanical energy, while a close circuit 
discharges electric potential.

With the increase of non-dimensional piezoelectric 
thickness, critical in-plane force is increased.  
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Also for close-circuit  
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And for open-circuit we have 
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