[1] J.R. Vinson, Sandwich structures, Applied Mechanics Reviews, 54(3) (2001) 201-214.
[2] E.B. Inés Ivañez, Sonia Sanchez-Saez, Analytical study of the low-velocity impact response of composite sandwich beams, Composite Structures, 111 (2014) 459-467.
[3] K.S.P. Michell S. Hoo Fatt, Dynamic models for low velocity impact damage of composite sandwich panels – Part A: Deformation, Composite Structures, 52(3) (2001) 335-351.
[4] S. Abrate, Impact on laminated composites, Recent Advances, Applied Mechanics Reviews, 47(11) (1994) 517-544.
[5] S. Abrate, Localized impact on sandwich structures with laminated facing, Applied Mechanics Reviews, 50(20) (1997) 68-82.
[6] S. Abrate, Modeling of impacts on composite structures Impact on laminated composite materials, Composite Structures, 51(2) (2001) 129-138.
[7] J.L. Abot, Daniel, I. M., & Gdoutos, E. E., Contact law for composite sandwich beams, J Sandwich Struct Mate., 4(2) (2002) 157-173.
[8] T.M. McCormack, Miller, R., Kesler, Failure of sandwich beams with metallic foam cores, Journal of Sandwich Structure Materials, 4(2) (2002) 157-173.
[9] L.J.-J. Schubel P. M., Daniel I.M., , Low-velocity impact behavior of composite sandwich panels, Compos. Part A,, 36(10) (2005) 1389-1396.
[10] W.J. E., Response mechanisms in the impact of graphite/epoxy honeycomb sandwich panels, MIT, 1991.
[11] C.L. Wu, Sun, C. T. , Low velocity impact damages in composite sandwich beams, Composite Structures, 34 (1996) 1.
[12] T. Anderson, Madenci, E., Experimental investigation of low-velocity impact characteristics of sandwich composites, Composite Structures, 50(3) (2000) 239-247.
[13] C.C. Foo, Chai, G.B., L.K. Seah, A model to predict low-velocity impact response and damage in sandwich composites, Composite Sciemce Technology, 68(6) (2008) 1348-1356.
[14] U. Icardi, Ferrero, L., Impact analysis of sandwich composites based on a refined plate element with strain energy updating, Composite Structures, 89(1) (2009) 35-51.
[15] M. Meo, Morris, A. J., Vignjevic, R., & Marengo, G. , Numerical simulations of low velocity impact on an aircraft sandwich panel., Composite Structures, 62(3) (2003) 353-360.
[16] S.-S.S. Ivañez I, Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core, Composite Structures, 106 (2013) 716-723.
[17] S.C. Ivañez I, Sanchez-Saez S., FEM analysis of dynamic flexural behavior of composite sandwich beams with foam core, composite Structures, 92(9) 2285–2291.
[18] T.A. Anderson., An investigation of SDOF models for large mass impact on sandwich composites, Composites: Part B, 36(2) (2005) 135-142.
[19] R. Olsson, Engineering Method for prediction of impact response and damage in sandwich panels, Journal of Sandwich Structure Materials, 4(1) (2002) 3-29.
[20] D.W. Zhou, & Stronge, W. J., Low velocity impact denting of HSSA lightweight sandwich panel., Internatonal Journal of Mechanical Science, 48(10) (2006) 1031-1045.
[21] M.A. Hazizan, & Cantwell, W. J., The low velocity impact response of foam-based sandwich structures, Composites: Part B, 33(3) (2002) 193-204.
[22] M.A. Hazizan, & Cantwell, W. J., The low velocity impact response of an aluminum honeycomb sandwich structure., Composites: Part B, 34(8) (2003).
[23] R.S. Hasebe, & Sun, C. T. , Performance of sandwich structure with composite reinforced core, Journal of Sandwich Structure Materials, 2(1) (2000) 75-100.
[24] C. Chen, Harte, A. M., & Fleck, N. A. . I., The plastic collapse of sandwich beams with a metallic foam core, Int. J Mech. Sci. , 43(6) (2001) 1483-1506.
[25] H.F.M. Türk MH, Localized damage response of composite sandwich plates, Compos Part B, 30(2) (1999) 157-165.
[26] M. Meo, Vignjevic, R., & Marengo, G. , The response of honeycomb sandwich panels under low-velocity impact loading, Int. J Mech. Sci., 47(9) (2005) 1301-1325.
[27] Y. Frostig, and M. Baruch., Buckling of simply-supported sandwich beams with transversely flexible core—a high order theory, J. Eng. Mech., 119 (1993) 955-972.
[28] Y. Frostig, Bending of sandwich beams with transversely flexible core and transverse diaphragms, J. Eng. Mech. Div., ASCE. , 119(5) (1993) 955-972.
[29] Y. Frostig, & Shenhar, Y. , High-order bending of sandwich beams with a transversely flexible core and unsymmetrical laminated composite skins, Compos. Eng. , 5(4) (1995) 405-444.
[30] Z. Xie, Zheng, Z., & Yu, J. , Localized indentation of sandwich beam with metallic foam core, Journal of Sandwich Structure Materials, 14(2) (2011) 197-210.
[31] P. Navarro, Abrate, S., Aubry, J., Marguet, S., & Ferrero, J. F. , Analytical modeling of indentation of composite sandwich beam., Composite Structures, 100 (2013) 79-88.
[32] A.L. Dobyns, Analysis of simply-supported orthotropic plates subject to static and dynamic loads, AIAA J 19(5) (1981) 642-650.
[33] K.S. Hibbit, ABAQUS/Explicit user’s manual Version 6.4.