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ABSTRACT: In this paper, an analytical solution for the static indentation and low velocity impact 
response of composite sandwich beams with an orthotropic symmetric composite face-sheets and foam 
or honeycomb core is presented. The indentation force during impact loading consists of two regimes, one 
for small indentations of the top face-sheet due to bending moments and the other for larger deformation 
due to membrane forces. Also, the crushable core is considered a rigid-plastic foundation, and the elastic 
aspect is neglected. To obtain a more accurate approximation of the static indentation of the beam, 
both the local and global deformation of the sandwich beam are considered. The minimum potential 
energy method is applied for the extraction of governing equations. Furthermore, by developing a three 
dimensional finite element model through the ABAQUS code, the low velocity impact on composite 
sandwich beams with foam core is simulated. The contact force history, maximum contact force, and 
upper face-sheet displacement results computed by the analytical model are compared with experimental 
and ABAQUS simulations. A good agreement between the analytical model, finite element simulation, 
and experimental results, is observed. 
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1- Introduction
The use of composite sandwich structures expanded as 

they can provide better performance due to their strength, 
stiffness, and resistance to impacts. Being lightweight is also 
a crucial feature for structures in industries such as aerospace, 
automotive, and marine; this quality could be fulfilled by 
using composite sandwich structures. The US Navy, for 
instance, benefits from honeycomb sandwich structures in 
bulkheads, deck houses, and helicopter hangars to reduce 
their weight; other applicants of these structures are in the 
body of sailboats and racing craft. Furthermore, the use of 
sandwich structures in infrastructure rehabilitation projects 
such as bridge decks in civil engineering indicates the wide 
range of its usage [1]. 

Since composite sandwich structures might undergo 
different kinds of local loadings during their longevity, like 
tool dropping, bird striking, and so on, a comprehensive 
perception of their behavior and failure is vital for a more 
dependable design. Low velocity impacts are dangerous for 
a composite sandwich structure as it is difficult to observe 
the damage; they could also substantially reduce the capacity 
of the load that the structures could be endurance [2, 3]. 
Therefore, understanding and predicting their behavior and 
the effect of low velocity impact on the performance of 
structures is necessary.

In addition to some thorough reviews in this area [4-
6], there are considerable researches which have intended 
to approach the subject in experimental, analytical, and 
numerical ways with the aim of detecting the deformation and 
failures of composite sandwich panels under impacts. There 
are many experimental pieces of research in this case [7-10]; 
Wu and Sun [11] experimentally studied failures and damages 
in a sandwich panel with foam core and graphic /epoxy face-
sheets due to low velocity impacts. According to their study, 
matrix cracking and delamination in composite and cracking 
in the foam were the paramount modes of failure.

Anderson and Madenci [12] presented an experimental 
investigation of the damage in sandwich panels with both 
foam and honeycomb core under the low-velocity impact. 
They indicated that structures with a higher density of foam 
and thicker face sheets need more energy to generate the 
damage, but the residual indentation is similar to those with 
lower density foam. 

A considerable number of numerical studies have been 
conducted on composite sandwich panels [13-15]. Ivañez 
and Sanchez-Saez [16], presented a numerical model for a 
composite sandwich beam with a honeycomb core subjected 
to a low velocity impact with different impact energies. She 
concluded that the core was responsible for the absorption 
of energy in the lowest velocities, while the participation of 
face sheets in higher velocities was more significant. Also, 
through a Finite element (FE) simulation with ABAQUS/
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Explicit code, Ivañez et al [17] indicated that the core collapse 
under the impact area is more possible than failure in the top 
face-sheet. 

Given that pursuing a numerical study according to its 
complexity requires a considerable effort, there has been a 
growing tendency toward adopting analytical procedures. 
Most impact analyses are based on common spring-mass 
models, like one degree of freedom [18], or two degrees 
of freedom [19, 20], and contact laws, such as Hertz’s law, 
Mayer’s law [21, 22], Hasebe and Sun’s law [23], Choi’s 
linear contact equation [24]. 

While the overwhelming majority of studies have 
concentrated on analyzing low velocity impact on composite 
sandwich panels [15, 25, 26] there are fewer research projects 
on sandwich beams that are used in different structures 
such as wind turbine blades. Frostig [27-29] investigated 
different aspects of sandwich beams by considering the 
bending behavior, buckling of sandwich beams, and their 
free vibration. The face sheets were modeled by the higher 
order plate theory. Localized indentation of a sandwich beam 
was investigated by Xie et al [30] and Navaro et al [31]. This 
solution was based on an approximation deformation profile 
for composite sandwich beams subjected to either a flat or 
a spherical indenter. By using minimum potential energy, 
an expression for indentation force was presented. Dobyns 
[32] tried to approach the behavior of a composite sandwich 
beam by considering different methods for core behavior. 
They presented two models for the elastic behavior of a core, 
with the Vlasov’s model showing a better agreement than 
Winkler’s model. A new analytical approach was presented 
by Ivanez et al. [2] which was based on Zhongyou’s model. 
One of the differences between the two models was that 
Ivanez simplified the approach by replacing the spherical 
indenter with a flat one. 

The modified solution in this paper (i.e. the exact 
deformation profile for a spherical nose indenter) has been 
considered. Another new facet of this study is the material 
behavior of the foam core, which is considered as plastic 
behavior.

This paper presents a modified analytical solution for 

the contact force history and top face-sheets deflection of 
sandwich composite beams under low velocity impact. The 
indentation force consists of two regimes, one for small 
indentations of the top face-sheet due to bending moments 
and the other for larger deformation due to membrane 
forces. The previous analytical models only considered large 
indentations. In the current study, the original deformation 
profile for the top face sheet is used. In addition, only the 
plastic behavior of the core is considered. The minimum 
potential energy is applied for driving the indention force and 
the contact force is determined by using the discrete mass-
spring model. The results are validated in the light of two 
independent experimental works and an analytical model. In 
addition, the FE simulation with ABAQUS/Explicit code is 
provided for comparison with the analytical model.

2- Analytical Solution
2- 1- Static indentation

The composite sandwich beam with the same top and 
bottom laminated face-sheets of thickness h  is illustrated in 
Fig. 1. The core has a thickness of ch  in the middle and is 
made of foam or honeycomb, while the beam has a width of 
b  and a length of L  with the simply supported boundary 
conditions also, the shape of a hemispherical-nose cylinder is 
considered for impactor.

In this paper, to obtain a more accurate approximation of 
the static indentation of the beam, both the local and global 
deformation of the sandwich beam are considered. 

2- 1- 1- Local deformation
Most of the previous studies have used Hertz’s contact 

law for determining the local deformation; this law would be 
inappropriate if the effects of core crushing and transverse 
deflections of the top sheet were considered.

The core could experience two modes of deformation 
depending on the local indentation. For a short period of 
impact, while the deformation reaches a specific amount, the 
core would be in an elastic mode, and then it changes to a 
rigid- plastic foundation. The deformation from the elastic 
to plastic mode is low, so the elastic mode of deformation 

 

Fig. 1. Scheme of a sandwich composite beam subjected to low velocity impact.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Scheme of a sandwich composite beam subjected to low velocity impact. 
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is negligible; however, Abrate [4, 5] and Navarro et al. [31] 
presented expressions for this period of time. Thus, the 
structure in this paper is considered as a beam on a rigid-
plastic foundation until the local indentation reaches the 
height of the face sheet. At this time, it is considered as a 
membrane resting on a perfectly plastic foundation.

2- 1- 2- Beam Resting on a perfectly plastic foundation
The method used for driving the relationship between the 

indentation force and local indentation of the top face sheet 
is based on minimizing the potential energy of the composite 
beam. The potential energy Π  is:

U D V     (1) 

 

2

22 2

2

2
( )

( )( ) 1
2 ( )

x
R

w x
a x a
R a









 
      

                                        (2) 

2 2
2 2

11 222 2

2 2 2
2

12 662 2

( ) ( )
1
2

2 ( )( ) 4 ( )A

w wD D
x y

U dA
w w wD D
x y x y

  
    

   
 

    

  (3) 

 

1 2

( ) ( )x x
A A

D qw dA qw dA     (4) 

 

1

( )2 x
A

PV w dA
ab

   (5) 

 

1 0 0

2
b a

A

dA dxdx    (6) 

 

2 0

2
b

A a

dA dxdx


    (7) 

1 2A A A

dA dA dA     

 

 (1)

Where ,U D  and V are the strain energy due to 
bending, the work due to core crushing, and the work done 
by indentation force, respectively.

The displacement profile of the face sheet is assumed as:
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Where a  is the radius of contact area between impactor 
face-sheet, and ξ represents the radius of total deformation 
area, R and δ  are the impactor radius and indentation, 
respectively.

The strain energy due to the bending U  of cross-ply 
laminate is expressed as [3, 25]:

U D V     (1) 
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The work due to core crushing D  is equal to:
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Finally, the work done by the indentation force is given 
by:

U D V     (1) 
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As shown in Fig. 2, the region of beam experience impact 
has been divided into two areas; the area exactly under the 
impactor, where the face-sheet and impactor are in direct 
contact (called 1A ), and the region that is not in direct contact 
with impactor but experiences the effect of the impact which 
is (known as 2A ). Where:
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Fig. 2. Contact area between the impactor and top face-sheet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Contact area between the impactor and top face-sheet
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By using Eqs. (6) and (7) and substituting Eq. (2) into (3), 
the following expression for strain energy would be derived:
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By the same sequence, work due to core crushing and 
indentation force given by:
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Therefore, the total potential energy is equal to:
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In order to obtain P  from the previous equation, Eq. (11) 
is minimized with respect to δ :
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For eliminating ξ and presenting the indentation force 
in terms of local deformation, Eq. (12) is minimized with 

respect to ξ :
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Therefore:
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2- 1- 3- Membrane resting on a perfectly plastic foundation
In this condition, the displacement profile is assumed to 

have a quadratic form [30, 31]:
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The work due to crushing core and indentation force can 
be derived as:
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Also, the elastic strain energy is given by [25]:
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Considering Eqs. (6 ) and (7) and substituting the 
displacement field in Eq. (18), the expression for the elastic 
strain energy would be derived as:
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Therefore, the potential energy in this condition is 
calculated by substituting Eqs. (16), (17) and (19) into Eq. 
(1):
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By minimizing Eq. (20); with respect to δ and ξ , the 
expression for indentation force in terms of local indentation 
is derived as:
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In Eqs. (14) and (21), the indentation force is a function 
of local indentation δ and contact radius  a . For eliminating 
contact radius, the above equations must be minimized with 
respect to a  which is difficult. Another approach used by 
Turk and Hoo Fat [25] is considering 0.4a R= . The 
difference between the two solutions is 3%.

2- 1- 4- Global deformation
The sandwich beam has two different deformations during 

impact, one is local deformation δ , which is the top face 
sheet’s local indentation during core crushing; and the second 
is global deformation ∆ , which consists of core shearing s∆
and face-sheet bending deformation b∆ :
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The bending deformation of a simply supported beam is 
given by:
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And core shear deformation is expressed as:
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Where the equivalent flexural rigidity and shear rigidity 
are equal to [24]:
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By substituting Eqs. (23) and (24) into Eq. (22), the global 
deformation is given by:

3 3

48( ) 4( )eq eq

PL PL
EI GA

    (27) 

 

g
PK 


 (28) 

0 ( )( )( )f i dM m P Q o                                                                                 (29) 

 ( )i d s gP Q m K                                                                                                    (30) 

 

(0) (0) 0 (0) (0)0 , , 0 , 0V         (31). 

2d dQ abq  (32) 

 

12
11 4

1( )
3114

5122 ( )
2725. ( )

d

bD aP abq
RD

q

 

 
 
   
 
 
  

 (33) 

 

32
11 4

2( )
3114

642 ( )
2725. ( )

5 d

bA aP abq
RA

q

 

 
 
   
 
 
  

 (34) 

tw    (35) 

 (27)

And the global stiffness of the sandwich beam could be 
written as:
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2- 2- Low velocity impact
In this study, Hoo Fatt’s two degrees of freedom model 

was used to indicate the contact force history and top face 
sheet deflection. In this discrete system, gk  is the global 
stiffness lk  is the top face-sheet stiffness, and ,f sm m  
are equivalent effective masses of face-sheet and sandwich 
beam, respectively. 0M  is the mass of the impactor (Fig. 3).

Equations of motion for this system could be described 
as [2]:
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And the initial conditions are:
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Where dQ  is the dynamic resistance of the core during 
crushing:
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And ( )iP δ  is the dynamic indentation force based on the 
local indentation; it would be either:
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For small local indentations and:
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For indentations further than the top face -sheet’s height.
By solving the system of Eqs. (29) and (30) numerically 

and calculating global deformation ∆ , and local indentation 
δ , the top face-sheet deflection history can be defined as:
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And the contact force in terms of time can be drawn as:
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2- 3- Effective masses:
For small indentation, for determining the effective mass 

of the top face-sheet in each regime, the velocity profile 
according to Eq. (2) is given by:
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Therefore, the kinetic energy can be approximated as:
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Fig. 3. Discrete Dynamic two degrees of freedom system [1, 2] 
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The kinetic energy of the top face-sheet with respect to 
effective mass is equal to:
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From Eqs. (38) and (39), the effective mass for the small 
deformation is expressed as:
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The same sequence is utilized to derive the effective mass 
of the top face sheet at large deformations. The displacement 
profile in Eq. (15) is taken into account to derive the velocity 
profile; thus, the effective mass would be:
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According to Iváñez et al.’s study [2], the deformation 
zone ξ  can be approximated as the quarter of the beam’s 
length. 

By considering the displacement profile of the sandwich 
beam under a central load the same as the profile in Dobyns’s 
research [36], the KE  is given as:
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The KE  with respect to the effective mass of the 
sandwich beam is also:
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Therefore, the effective mass of the sandwich beam has 
the following expression:
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3- Numerical Modeling
An ABAQUS/Explicit code [33] is used to develop 

a numerical model to analyze the low velocity impact of 
composite sandwich beam with foam core.

Each face-sheet is made from 5 plies cross-ply E-glass 
fibers and polyester resin with the following angles 
[0/90/0/90/0]. The elastic geometrical and mechanical 
properties of the composite, core, and impactor are listed in 
Table 1. 

The core is considered as a crushable foam with elastic and 
plastic behavior. The elasticity and plasticity behavior could be 
determined by the strain-stress curve in compression presented in  
Fig. 4. From the stress-strain curve presented in Fig. 4, it 
can be observed that when the stress reaches the yield stress, 
the foam, which is made of cells, begins to collapse. In the 
plastic yielding plateau, however, while the strain increases, 
the stress stays almost the same. By continuing the load, 
densification of the core material starts, and almost all the 
cell walls crush with each other, and the last section of the 
stress-strain curve is happening [17].

 

Fig. 4. Nominal stress- strain curve of a compression test on PVC foam [16]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Nominal stress- strain curve of a compression test on PVC foam [16] 
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Table 1. Geometrical and material properties of the impactor and composite sandwich beam with 
foam core [17] 

able 1. Geometrical and material properties of the impactor and composite sandwich beam  

Face sheets: E-glass fibers and polyester resin AROPOL FS6902 

Beam’s length 480mmL   
Beam’s width 50mmb   
Face sheet’s height 3mmh   
Face sheet’s density 31800kg/mf   

 
Ply features 

Longitudinal stiffness 11 10.1GPaE   
Transverse stiffness 22 10.1GPaE   
Poisson’s ratio 12 0.16   

In- plane shear modulus 12 3.1GPaG   

Tensile strength 367.4MPaT TX Y   

Compressive strength 367.4MPaC CX Y   

Transverse shear strength 13 23 34.3MPaS S   

Core: PVC foam 

Core’s height 30mmch   

Core’s density 3100kg/mc   

 Core features 

Young’s Modulus 87MPaCE   

Poisson’s ratio 0.3C   

 
Striker: Hemispherical nose steel cylinder 

Mass 0 5.88kgM   

Radius 10mmR   
Velocity 0 2.5 4 m/sV    
 Striker feature 
Young’s Module 0 210GPaE   

Poisson’s ratio 0 0.3   
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The sandwich beam in this study has simply supported 
boundary conditions, the vertical displacements restricted at 
two ends of the beam. The mesh scheme for the composite 
sandwich beam and impactor is shown in Fig. 5. 

In order to have a more accurate estimation of the number 
of elements, a comparison between this factor and maximum 
contact force is conducted. In this comparison, miscellaneous 
scenarios, each of which embodies a unique number of 
elements disseminated differently throughout the beam, are 
taken into consideration. Fig. 6 indicates that for the number 
of elements more than 25000, the maximum contact force 
remains stable (around 3550 N). 

Two composite face sheets are merged to the foam core 
by using TIE CONSTRAINT and the contact between the 
impactor and the whole sandwich beam is a frictionless 
surface-to-surface contact. Figs. 7 and 8 demonstrate the 
process of impact on a composite sandwich beam with a foam 
core and contour of deflection of the top face-sheet at the 
same impact energy and different impact mass and velocity.

4- Results and Discussion
In this section, the contact force history, maximum 

contact force, and deflection of the composite sandwich 
beam predicted by the new model are compared to the results 
of available experimental studies [17] and the analytical 
model [2]. Moreover, the contact force history computed 
by ABAQUS, and FE simulations, are compared with the 
analytical model and Ivañez et. al’s [17] simulations.

Two configurations of composite sandwich beams are 
considered in this paper. The geometrical and mechanical 
properties of impactor, face-sheets, and cores are listed in 
Tables 1 and 2. 

The first comparison is based on a composite sandwich 
beam with foam core. The characteristics of sandwich beam 
and impactor are based on Table 1. In Fig. 9, the contact-
force history predicted by the new model has been compared 
with experimental results [17]. A good agreement is observed 
between experimental results and the new analytical model. 
The differences between the results of experimental studies 

 

 

 

Fig. 5. FE simulation in ABAQUS code 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. FE simulation in ABAQUS code
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and those of the new model for computing contact duration 
and maximum contact force are about 0.35% and 7.5%, 
respectively. Oscillations observed in the contact force 
are determined based on numerical simulation due to the 
reciprocation of the stress wave in the numerical simulation, 
which is not considered in the analytical model.

In Fig. 10, the maximum contact force determined by the 
new analytical model has been compared with experimental 
results [17] at impact energy 25 to 75J. The difference between 
the experimental and new model results is less than 10%. At 
impact energies lower than 55J, the analytical solution has 
a significant agreement with experimental results and the 
difference is less than 6.55%. However, for higher impact 
energies, the difference between the experimental results and 
those of the new model increases; in the new model presented 
in this paper, the failure and damage in composite face-sheets 
and core are ignored; however, the stiffness of sandwich beam 
with the initiation of damage decreases, which is neglected in 
the new analytical model. 

In Fig. 11, the maximum deflection of the upper face-
sheet versus impact energy is shown. The analytical solution 
in this comparison shows a reasonable agreement with the 
experimental results [17] for the prediction of maximum 
deflection of the composite sandwich beam. Also, with 
trebling the impact energy, the maximum deflection increases 
by double.

In the second comparison, the low velocity impact 
on sandwich composite beam with honeycomb core is 
investigated. The characteristics of the sandwich honeycomb 
beam and impactor are listed in Table 2. The comparison 
was made with three distinguished velocities including, 
2.04,   2.62,  and 2.77 m / s . 

In Fig. 12, the contact force history computed by the 
new model was compared with experiment results [16] and 
Ivanez’s model [16]. It is clear that the contact force history 
computed by the new model has better consistency with 
experimental results than Ivanez’s model [16]. 

Also, in Tables 3 and 4, the maximum contact force and 
contact duration determined by the new model are compared 
by experimental results [16], respectively. The maximum 
difference between contact duration and maximum contact 
force are 3.22% and 8.23% respectively. Additionally, 
by increasing impact energy, as expected, the maximum 
contact force increases, and the contact duration is constant, 
approximately.

In the next part, the comparison between the FE simulations 
with the ABAQUS code and Ivanez numerical model [17] for 
a composite sandwich beam with foam core is described. The 
impactor and sandwich beam specifications are presented in 
Table 1. The comparison is aimed at validating the numerical 
solution in this paper. Fig. 13 presents a comparison between 
the results of contact force history computed by the ABAQUS 
simulation and Ivanez’s numerical model [17]. 

In this figure, the thicknesses of composite skins are equal 
to 2 mm. The composite sandwich beam was struck by an 
8kg mass and 20mm diameter striker. A good agreement is 
observed between the contact force history in the ABAQUS 
simulation and Ivanez’s numerical model [17].  The deviations 
for maximum contact force and contact duration are almost 
6.85% and 2.04%, respectively. In the new FE simulation, 
presented in this paper, failure and damage of the composite 
faces-sheet and foam core and the strain rate effects  were 
neglected. The composite face-sheet and the core are made of 
E-glass fibers and polyester resin AROPOL FS6902 and PVC 

 

Fig. 6. Maximum contact force versus number of elements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Maximum contact force versus number of elements
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Time=0 

 

Time=13.5 ms 

 

Time=20 ms 

Fig. 7. The process of impact on foam based sandwich composite beam.  

Impact velocity: 3m/s, Impactor mass: 8kg 

 

Fig. 7. The process of impact on foam based sandwich composite beam. Impact velocity: 3m/s, 
Impactor mass: 8kg
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Time=0 

 

 

Time=13.5 ms 

 

 

Time=20.3ms 

Fig. 8. The process of impact on foam based sandwich composite beam. 

 Impact velocity: 3.5 m/s, impactor mass: 5.88 kg 

 

 

Fig. 8. The process of impact on foam based sandwich composite beam. Impact velocity: 3.5 m/s, 
impactor mass: 5.88 kg
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Table 2. Geometrical and material properties of the impactor and composite sandwich beam with 
honeycomb core [16] 

Table 2. Geometrical and material properties of the impactor and composite sandwich 

beam with honeycomb core [16]  

Faces-sheet: Carbon fiber and epoxy resin (AS4-8552) 

Beam’s length 
480mmL    
480mmL   

Beam’s width 50mmb   

Face sheet’s height 2mmh   

Face sheet’s density 31600kg/mf   
 
Ply features 

Longitudinal stiffness 11 68.9GPaE   

Transverse stiffness 22 68.9GPaE   

Poisson’s ratio 12 0.22   

In- plane shear modulus 12 9GPaG   

Core: 3003 alloy hexagonal aluminum honeycomb 

Core’s height 
ℎ𝑐𝑐 = 20mm 

20mmch   

Core’s density 377kg/mC   

Core features 

In- plane shear modulus 144MPaCG   

Striker: Hemispherical nose steel cylinder 

Mass 0 4kgM   

Radius 10mmR   
Velocity 0 2.04,2.62,2.77m/sV   

Striker feature 

Young’s Module 0 210GPaE   

Poisson’s ratio 0 0.3v   
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Fig. 9. Experimental and analytical contact force history in composite sandwich beam with FOAM core. 

(Impact velocity: 3m/s, impactor mass: 8 kg) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Experimental and analytical contact force history in composite sandwich beam with FOAM core. 
(Impact velocity: 3m/s, impactor mass: 8 kg)

 

 

Fig. 10. Experimental and analytical maximum contact force of composite sandwich beam with FOAM core 

in various impact energies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Experimental and analytical maximum contact force of composite sandwich beam 
with FOAM core in various impact energies.
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Fig. 11. Experimental and analytical maximum displacement of composite sandwich beam with FOAM core 

in various impact energies. 

 

(a) Impact velocity: 2.04 m/s Impactor mass=4kg 

Fig. 11. Experimental and analytical maximum displacement of composite sandwich beam with FOAM 
core in various impact energies.

 

Fig. 11. Experimental and analytical maximum displacement of composite sandwich beam with FOAM core 

in various impact energies. 

 

(a) Impact velocity: 2.04 m/s Impactor mass=4kg 

Fig. 12. Experimental, Ivanez and present analytical model contact force history of a composite sand-
wich beam with honeycomb core. (Continude)
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(b) Impact velocity: 2.62 m/s Impactor mass=4kg 

 

(c) Impact velocity: 2.77 m/s Impactor mass=4kg 

Fig. 12. Experimental, Ivanez and present analytical model contact force history of a composite sandwich 

beam with honeycomb core.  

Fig. 12. Experimental, Ivanez and present analytical model contact force history of a composite sand-
wich beam with honeycomb core. 
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Table 3. Comparison of maximum contact force between the new analytical model and experimental 
[16] results.

Table 3. Comparison of maximum contact force between the new analytical model and 

experimental [16] results. 

Impact velocity (m/s) 
maximum contact force (kN) 

Diff % 
Experimental [16] New analytical 

model 

2.04 2671.20 2792.03 4.52 

2.62 3587.04 3587.12 0.003 

2.77 3482.10 3768.71 8.23 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 13. Comparison of FE simulation and Ivanez numerical model for contact force history in sandwich 

beam with FOAM core at impact velocity 3m/s  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Comparison of FE simulation and Ivanez numerical model for contact force history in sandwich 
beam with FOAM core at impact velocity 3m/s 
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foam. However, in Ivanez’s numerical model [17], the Hou 
Damage criteria for composite face sheets were applied. The 
coefficients of mechanical properties in this model, chosen 
for composite face sheets and foam core, were selected from 
Ivanez’s study [17].

In Figs. 14 and 15, the contact force and deflection of 
top face-sheet histories predicted by the new model were 
compared with the ABAQUS simulation. The results show 
that, at the same impact energy, lowering the impactor 
mass and raising the impact velocity have little effect on 
the maximum contact force and maximum deflection of 
the sandwich beam, but the contact duration is significantly 
reduced.

5- Conclusions
This paper presented a modified analytical solution for 

low velocity impact response of simply supported cross-
ply composite sandwich beams by using the two degrees 
of freedom mass-spring model. In this model, based on the 
small local indentations and indentations more than the top 
face -sheet’s height, two different equations for computing 
the contact force, were derived.

The results of the analytical model are compared with 
two experimental studies: (1) faces-sheets made from E-glass 
fibers and polyester resin AROPOL FS6902 and a PVC foam 
core; (2) a 3003 alloy hexagonal aluminum honeycomb core 
surrounded by two face-sheets composites of carbon fiber 
and epoxy resin is used. 

According to the analytical model results, we can draw 
the following conclusions:

The contact fore history, maximum contact force, and 
maximum displacement of composite sandwich beam with 
FOAM core have good agreement with experimental results 
at different impact energies.

The contact force history of composite sandwich beam 
with honeycomb core has good consistency with experimental 
results at different impact energies.

 The contact force and top face sheet deflection histories 
predicted by the analytical model have an acceptable 

agreement with the Finite Element Method (FEM) ABAQUS 
simulation of composite sandwich beam with FOAM core at 
different impact energies.

The results show that, at the same impact energy, by 
decreasing the impactor mass and increasing the impact 
velocity, the contact duration declines, while the maximum 
contact force and maximum deflection of the sandwich beam 
are almost constant.

Notation

Table 4. Comparison of experimental and analytical contact duration
Table 4. Comparison of experimental and analytical contact duration 

Impact velocity (m/s) 
Contact duration (ms) 

Diff % Experimental results 
[16] Analytical model 

2.04 8.96 8.85 1.19 

2.62 8.56 8.91 2.62 

2.77 8.58 8.86 3.22 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notation 
a contact radius  

ijA Extensional stiffness matrix of laminate  
b Beam’s width  
D Work due to crushing core  

ijD Bending stiffness matrix of laminate  

11E Longitudinal stiffness of face sheets  

22E Transverse stiffness of face sheets  

cE Young’s Modulus of the core  

( )eqEI equivalent flexural rigidity of the  
sandwich beam  

( )tF Contact force  

cG Core’s in-plane shear modulus  

12G Face sheet’s in-plane shear modulus  

( )eqGA equivalent shear rigidity of the  
sandwich beam  

h Face sheet’s height  

ch Core’s height  

gK global stiffness  

LK top face sheet stiffness  
L Beam’s length  

fm equivalent effective mass of face sheet  

sm equivalent effective mass of sandwich beam  

0M Striker’s mass  
P Indentation force  
q Static core crushing strength   

dq Dynamic core crushing strength   

dQ Dynamic core crushing load   
R Striker’s radius   
U Elastic strain energy   
V Work done by indentation force   

0V Impact velocity   
( )w x Displacement profile of the face sheet   

tw Top face sheet deflection   
 Local deformation   
 Velocity of top face sheet   
 Global deformation   
 Velocity of sandwich beam   

b
Deformation of sandwich beam due to 
bending   

s Deformation of sandwich beam due to shear   
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(a) Impact energy: 25J 

 

 

(b) Impact energy: 36J 

Fig. 14. Analytical and FE simulation for contact force history in foam based sandwich beam with same 
impact energy but different impactor mass and velocity. 

 

Fig. 14. Analytical and FE simulation for contact force history in foam based sandwich beam with same 
impact energy but different impactor mass and velocity.
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(a) Impact energy: 25J 

 

 

(b) Impact energy: 36J 

Fig. 15. Analytical and FE simulation for top face sheet deflection history in foam based sandwich beam with 

same impact energy but different impactor mass. 

 

Fig. 15. Analytical and FE simulation for top face sheet deflection history in foam based sandwich beam 
with same impact energy but different impactor mass.
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