[1] H. Y. Li, A Two-Dimensional Cylindrical Inverse Source Problem in Radiative Transfer, Quant. Spectrosc. Radiat. Transfer, 69 (2001) 403–414.
[2] L. H. Liu, Inverse Radiative Problem in Semitransparent Slab with Variable Spatial Refractive Index, Thermophys. Heat Transfer, 18 (2004) 410–413.
[3] S. M. Hosseini Sarvari, Inverse Estimation of Radiative Source Term in Two-Dimensional Irregular Media, in: Proc. Fifth Symp. Radiative Heat Transfer, Bodrum, Turkey, 2007.
[4] A. Namjoo, S. M. Hosseini Sarvari, A. Behzadmehr, S. M. Mansouri, Inverse Radiation Problem of Temperature Distribution in One-Dimensional Isotropically Scattering Participating Slab with Variable Refractive Index, Quant. Spectrosc. Radiat. Transfer, 110 (2009) 491–505.
[5] S. Payan, S. M. Hosseini Sarvari, A. Behzadmehr, Inverse Estimation of Temperature Profile in a Non-Gray Medium with Soot Particles Between Two Parallel Plates, Numer. Heat Transfer, 63 (2013) 31–54.
[6] S. Qiu, C. Lou, D. Xu, A Hybrid Method for Reconstructing Temperature Distribution in a Radiant Enclosure, Numer. Heat Transfer 66 (2014) 1097–1111.
[7] R. Sanchez, N. J. McCormick, Numerical Evaluation of Optical Single-Scattering Properties Using Multiple-Scattering Inverse Transport Method, Quant. Spectrosc. Radiat. Transfer, 28 (1982) 169–184.
[8] W. L. Dunn, Inverse Monte Carlo Solution for Radiative Transfer in Inhomogeneous Media, Quant. Spectrosc. Radiat. Transfer, 29 (1983) 19–26.
[9] C. H. Ho, M. N. Ozisik, Inverse Radiation Problem in Inhomogeneous Media, Quant. Spectrosc. Radiat. Transfer, 40 (1988) 553–560.
[10] C. H. Ho, M. N. Ozisik, An Inverse Radiation Problem, Heat Mass Transfer, 32 (1989) 335–341.
[11] S. Subramaniam, M. P. Menguc, Solution of the Inverse Radiation Problem for Inhomogeneous and Anisotropically Scattering Media Using a Monte Carlo Technique, Heat Mass Transfer, 34 (1991) 253–266.
[12] M. P. Menguc, S. Manickavasagam, Inverse Radiation Problem in Axisymmetric Cylindrical Scattering Media, Thermophys. Heat Transfer, 7 (1993) 479–486.
[13] J. Silva Neto, M. N. Ozisik, An Inverse Problem of Simultaneous Estimation of Radiation Phase Function, Albedo and Optical Thickness, Quant. Spectrosc. Radiat. Transfer, 53 (1995) 397–409.
[14] L. H. Liu, H. P. Tan, Q. Z. Yu, Simultaneous Identification of Temperature Profile and Wall Emissivities in One-Dimensional Semitransparent Medium by Inverse Radiation Analysis, Numer. Heat Transfer, 36 (1999) 511–525.
[15] L. H. Liu, H. P. Tan, Q. Z. Yu, Inverse Radiation Problem of Sources and Emissivities in One Dimensional Semitransparent Media, Heat Mass Transfer, 44 (2001) 63–72.
[16] H. Y. Li, M. N. Ozisik, Inverse Radiation Problem for Simultaneous Estimation of Temperature Profile and Surface Reflectivity, Thermophys. Heat Transfer, 7 (1993) 88–93.
[17] H. C. Zhou, Y. Feng Sheng, C. G. Zheng, Simultaneous Estimation of the Profiles of the Temperature, and Scattering Albedo in an Absorbing, Emitting, and Isotropically Scattering Medium by Inverse Analysis, Heat Mass Transfer, 43 (2000) 4361–4364.
[18] H. C. Zhou, Y. B. Hou, D. L. Chen, C. G. Zheng, An Inverse Radiative Transfer Problem of Simultaneously Estimating Profiles of Temperature and Radiative Parameters from Boundary Intensity and Temperature Measurements, Quant. Spectrosc. Radiat. Transfer, 74 (2002) 605–620.
[19] H. C. Zhou, S. D. Han, Simultaneous Reconstruction of Temperature Distribution, Absorptivity of Wall Surface and Absorption Coefficient of Medium in a 2-D Furnace System, Heat Mass Transfer, 46 (2003) 2645–2653.
[20] C. Lou, H. C. Zhou, Simultaneous Determination of Distributions of Temperature and Soot Volume Fraction in Sooting Flames Using Decoupled Reconstruction Method, Numer. Heat Transfer, 56 (2009) 153–169.
[21] D. Liu, J. H. Yan, F. Wang, Q. X. Huang, Y. Chi, K. F. Cen, Inverse Radiation Analysis of Simultaneous Estimation of Temperature Field and Radiative Properties in a Two-Dimensional Participating Medium, Heat Mass Transfer, 53 (2010) 4474–4481.
[22] S. M. Hosseini Sarvari, Inverse reconstruction of path-length κ-distribution in a plane-parallel radiative medium, Numer. Heat Transfer 68 (2015) 336– 354.
[23] A. D. Klose, A. H. Hielscher, Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer, Medical Physics, 26 (1999) 1698-1707.
[24] Z. Guo, S. K. Wan, K. Kim, C. Kosaraju, A Comparing Diffusion Approximation with Radiation Transfer Analysis for Light Transport in Tissues, Optical Review, 10 (2003) 415–421.
[25] H. K. Kim, A. Charette, Frequency domain optical tomography using a conjugate gradient method without line search, Quantitative Spectroscopy & Radiative Transfer, 104 (2007) 248–256.
[26] Y. B. Qiao, H. Qi, Y. T. Ren, J. P. Sun, L. M. Ruan, Application of SQP Algorithm for Fluorescence Tomography with The time-Domain Equation of Radiative Transfer, Quantitative Spectroscopy & Radiative Transfer, 193 (2017) 21–30.
[27] F. Z. Zhao, H. Qi, S. B. Liu, Y. T. Ren, Improved optical tomography based on hybrid frequency-domain and time domain radiative transfer model, Infrared Physics and Technology, 111 (2020) 1350-4495.
[28] F. C. Lockwood, N. G. Shah, A New Radiation Solution Method for Incorporation in General Combustion Prediction Procedures, in: Proc. 18th Symp. (Int.) Combustion, Pittsburgh, 1981, pp. 1405–1414.
[29] S. M. Hosseini Sarvari, Solution of multi-dimensional radiative heat transfer in graded index media using the discrete transfer method, International Journal of Heat and Mass Transfer, 112 (2017) 1098-1112.
[30] M. M. Razzaque, D. E. Klein, J. R. Howell, Finite element solution of radiative heat transfer in a two dimensional rectangular enclosure with gray participating media, ASME Journal of Heat Transfer, 105 (1983) 933-936.