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ABSTRACT: In this article, an inverse radiation analysis is presented to reconstruct the absorption 
coefficient distribution from the knowledge of wall heat fluxes for a two-dimensional, absorbing-
emitting medium with black walls. The inverse approach aims to find the location of inclusion with a 
different absorption coefficient. For this purpose, the study is divided into two parts; the direct and the 
inverse problems. In the direct problem, the radiative transfer equation is solved by the discrete transfer 
method from the knowledge of the absorption coefficient distribution and we obtain heat fluxes over the 
walls. Then the measured data are simulated virtually by adding the random errors to heat fluxes. The 
conjugate gradient method is used to solve the inverse problem to estimate the absorption coefficient 
distribution. As the measured data are less than the estimated parameters, a multi-step procedure is 
adopted to restrict the search region. Results show that the absorption coefficient distribution is well 
recovered in the medium with a low absorption coefficient by a two steps procedure. The results show 
that the location of inclusion may be found even by noisy data with 1% and 3% measurement errors. 
However, as the absorption coefficient increases, the location of inclusion is reconstructed in a three 
steps procedure and the inverse estimation becomes less efficient and time-consuming.
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1- Introduction
The applications of inverse radiation analysis in absorbing-

emitting media include the prediction of temperature 
profiles or radiative properties by experimental radiation 
measurement. Such an inverse problem has applications in 
many fields; One of those is optical tomography, which tries 
to find out the location of a tumor. In this regard, the article 
aims to find the tumor location that its absorption coefficient 
is different from other medium backgrounds.

Many researchers have investigated the estimation of 
temperature field or source term distributions [1-6]. The in-
verse estimation of radiative properties has been reported by 
many researchers [7-13]. Many studies have reported on the 
simultaneous estimation of source term and radiative proper-
ties. Liu et al. [14, 15] and Li and Ozisik [16] investigated 
simultaneous estimation of temperature field and surface re-
flectivities. An inverse method for simultaneous estimation 
of temperature, absorption, and scattering coefficients was 
proposed by Zhou et al. [17, 18]. Zhou and Han [19] investi-
gated an inverse reconstruction of temperature distribution, 
wall absorptivity, and absorption coefficient of a medium. 
Simultaneous determination of temperature distribution and 
soot volume fraction was reported by Lou and Zhou [20]. An 
inverse analysis for simultaneous estimation of temperature 
field and uniform medium properties for a two-dimensional 
furnace from the knowledge of exit intensity at boundary 

surfaces was proposed by Liu et al. [21]. Recently Hosseini 
Sarvari [22] presented an inverse analysis for estimation of 
absorption coefficient distribution in plane-parallel gray-
diffuse media by the measurement of exit intensity received 
by radiation detectors at boundary surfaces. In the field of 
optical tomography, Klose and Hielscher [23] investigated an 
iterative reconstruction scheme for optical tomography, using 
the finite-difference discrete-ordinate formulation and the ad-
joint differentiation scheme to solve the equation of radiative 
transfer and the inverse problem, respectively. Comparison of 
diffusion approximation with Radiation Transfer (RT) analy-
sis for light transport in tissues was investigated by Guo et al. 
[24]. The results show that RT modeling is more efficient and 
accurate. Kim and Charette [25] reported a frequency domain 
optical tomography using the conjugate gradient method 
without line search. Qiao et al. [26] investigated a reconstruc-
tion scheme for the fluorescence tomography based on the 
Time-Domain Radiative Transfer Equation (TD-RTE) by us-
ing an inverse method. Improved optical tomography based 
on a hybrid frequency-domain and time-domain radiative 
transfer model was presented by Zhao et al. [27].

In this article, we present an inverse analysis for estima-
tion of absorption coefficient distribution in a two-dimen-
sional semitransparent medium from the knowledge of heat 
fluxes over the walls. The inverse approach aims to develop a 
procedure to find the location of inclusion with a different ab-
sorption coefficient. The application of this approach is use-
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ful in optical tomography with steady-state radiative media. 
The study is divided into two parts; the direct and the inverse 
problems. In the direct problem, the discrete transfer method 
[28] is used to solve the Radiative Transfer Equation (RTE). 
The inverse problem is solved by the Conjugate Gradient 
Method (CGM). A multi-step strategy is used to overcome the 
lack of measured data. Results show that the inverse estima-
tion can successfully estimate the location of inclusion with a 
different absorption coefficient, especially for the media with 
a low absorption coefficient.

2- Description of Problem
Fig. 1 shows a simple physical model of a two-dimensional 

absorbing-emitting semitransparent medium. The walls are 
black with specified temperature and radiative properties. As 
shown in Fig. 1, the whole medium has the same specified 
absorption coefficient Bκ (red-colored medium), except for 
inclusion inside it, where its absorption coefficient, Iκ , is 
different from the background (blue-colored medium). Such 
a medium may be seen in tomography analysis, where the 
optical properties of tumors are different from the biological 
tissue. The inverse problem aims to find the location and 
magnitude of the absorption coefficient in inclusion, from the 
knowledge of radiative heat fluxes over the boundaries.

3- Direct Problem
The equation of radiative transfer in an absorbing-emit-

ting medium is as follows [28]:
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where the boundary conditions for black walls are given 
by
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Here subscript w denotes the value at the wall surface.
( )I s is the radiation intensity, and κ  is the medium’s absorp-

tion coefficient. Radiative heat flux over the wall surface is 
obtained by [28]
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To solve the RTE, the medium is discretized by a mesh 
with square cells. The discrete transfer method includes ray 
tracing along the rays emanating from surface elements. The 
center of each wall surface element is the source of radiative 
rays, which propagate along with the discrete solid angles and 
travel straight paths through the domain until reach other sur-
face elements[29] (see Fig. 2).

Integrating Eq. (1) over the path lengths through the 
volume element leads to the following relation
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Fig. 1. A schematic specified radiative heat flux applied to the boundaries of a two-dimensional 

semitransparent medium (red-colored) with inclusion (blue-colored) in it with different radiative properties 
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Fig. 1. A schematic specified radiative heat flux applied 
to the boundaries of a two-dimensional semitransparent 
medium (red-colored) with inclusion (blue-colored) in it 

with different radiative properties

 

Fig. 2. A schematic semitransparent medium, spatial mesh, and ray trajectories from a surface element 
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Fig. 2. A schematic semitransparent medium, spatial 
mesh, and ray trajectories from a surface element
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and the radiative heat flux at the wall surface is approxi-
mated by:
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is the weight associated with direction j. The numerical 
approach for the DTM is described in detail in Ref. [28] and 
will not be repeated.

4- Inverse Problem
One of the efficient methods for solving inverse problems 

is the Conjugate Gradient Method (CGM), which is used for 
linear and nonlinear inverse problems. In this study, the un-
known parameter is the absorption coefficient. The CGM is 
the iterative procedure that is based on the minimization of 
the objective function, which is given by:
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Here the and are the vectors containing the 
measured and the estimated radiative heat fluxes, respec-
tively. ( )k

nF κ∇


 is the vector of independent absorption coefficients 
over the volume cells. Absorption coefficients are updated by:
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where kd


is the direction of descent and kβ  is the search 
step size, which is defined by:
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In Eq. (9), kγ is the conjugation coefficient which is cal-
culated by:
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Here, N is the number of unknown parameters. ( )k
nF κ∇
  is 

the n-th component of gradient direction, which is obtained 
by differentiation of the objective function, Eq. (7), with re-
spect to ( )k

nF κ∇


as: 
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where kS is the sensitivity matrix. The components of the 
sensitivity matrix are defined as
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where N and M are the numbers of unknown parameters 
and the number of surface elements, respectively. The stop-
ping criterion for terminating the iterative procedure is
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where ξ  is a small positive number, say 2010− .

5- Sensitivity Problem
Sensitivity coefficients, Smn, expresses the sensitivity of 

wall heat flux, mQ ,with respect to the variation of nκ . To 
obtain the sensitivity elements, the direct problem given by 
Eq. (5) is differentiated with respect to k

nκ  as:
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where 
, /k k

w j nI κ∂ ∂  is calculated by differentiation of Eq. 
(4) as:
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where cnδ  is the Kronecker delta defined as:
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6- Simulation of the Measured Data
In a real problem, the experimental data contain some er-

rors due to measurement methods and instrumentation. To 
consider the effects of random errors in the measured data, 
normal distributed random errors are imposed on parameters
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whereζ s a normal distributed random error with zero 
mean and unit standard deviation, and mϑ is given by [22]:
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which means that 99% of normally distributed mϑ  is 
within +2.576 standard deviation from the mean value [22]. 
Here,η  is the measurement error associated with the mea-
sured data.

7- Computational Algorithm
The computational algorithm for solving the inverse prob-

lem by the CGM is summarized as follows:

1. Assume an initial guess for absorption coefficients, 
0κ .

2. Solve the direct problem with an available estima-
tion of unknown parameters, and compute the radiative heat 
fluxes over the wall surface elements.

3. Calculate the objective function, ( )F κ , from Eq. 
(7). Stop the iterative procedure if the stopping criterion is 
satisfied. Otherwise, go to step 4.

4. Compute the sensitivity coefficients, given by Eq. 
(13).

5. Compute the gradient direction, from Eq. (12), and 
then compute the conjugation coefficient from Eq. (11).

6. Compute the direction of descent from Eq. (9).
7. Compute the search step size from Eq. (10).
8. Compute a new set of absorption coefficients by Eq. 

Set k = k + 1 and return to step 2.
The flowchart of the computational algorithm is shown 

in Fig. 3.

 

Fig. 3. Computation procedure for solving the inverse problem by the CGM 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Computation procedure for solving the inverse problem by the CGM
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8- Verification of Direct Solution
The performance and accuracy of the direct solution with 

DTM are examined by comparing the results with those ob-
tained by the Finite Element Method (FEM) benchmarks pre-
sented by Razzaque et al. [30]. Consider a square, absorbing-
emitting medium in radiative equilibrium surrounded by black 
walls as depicted in Fig. 4. The optical thickness is 1Lκ = , 
The walls are at 0 K , 2,3, 4wiT i= = and 1 1000 KwT = .

The distribution of dimensionless heat flux, 4
1/ ( )wQ Tσ

, over the lower surface, as shown in Fig. 5, shows a good 
agreement with the benchmark.

9- Results and Discussion
The aim of the inverse problem is the reconstruction of 

the absorption coefficient distribution in a square enclosure 
with unit length as depicted in Fig. 1. We consider two test 
cases in two-dimensional absorbing-emitting media with low 
and high absorption coefficients, specified temperature distri-
bution, and black walls. In all cases, two-dimensional 10 10×  
spatial and angular meshes are applied. The number of 40 
heat fluxes over the center of control surfaces is considered as 
measured data. The exact location of inclusion is in the region 
where 0.4 0.6,0.3 0.5x y≤ ≤ ≤ ≤ . All the specifications for 
both cases are listed in Table 1.

Test Case 1:This example aims to show the performance 
of the multi-step method to detect the location of inclusion in 
a participating medium from the knowledge of boundary heat 
fluxes. In this case, we solve a problem with a low absorp-
tion coefficient. The schematic of the absorption coefficient 
distribution is shown in Fig. 1. Now, the goal of the inverse 
problem is to reconstruct the absorption coefficient distribu-
tion. The absorption coefficient of background is considered 
to be 11mBκ

−= . The inverse problem aims to detect the loca-
tion of inclusion with 10.1mIκ

−= . 
As the number of measured data is less than the number of 

estimated results, the problem has multiple solutions. Hence, 
the inverse problem must be solved in a multi-step procedure. 
For the first step, a uniform κ -distribution is considered as 
the initial guess. Then the inverse procedure is adapted to find 
the distribution of the absorption coefficient. Since the num-
ber of measured data (the number of 40 heat fluxes for 40 
control surfaces) is less than the number of volume elements 
(100 volume elements), at the first step, the estimated absorp-
tion coefficient distribution is far from the exact distribution. 
The result for the first step is shown in Fig. 6. As seen in Fig. 
6, the distribution of κ  is far from the exact solution. How-
ever, the result of the first step may predict the approximate 

 

Fig. 4. Two-dimensional square absorbing-emitting medium in radiative equilibrium surrounded by black walls at 

Twi = 0 K ,  i= 2,3,4  and Tw1 = 1000 K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Two-dimensional square absorbing-emitting 
medium in radiative equilibrium surrounded by black 

walls atTwi = 0 K ,  i= 2,3,4  and Tw1 = 1000 K

 

Fig. 5. Dimensionless heat flux distribution over the lower surface of the absorbing-emitting medium shown in Fig. 4 
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Fig. 5. Dimensionless heat flux distribution over the lower surface of the absorbing-emitting medium shown in Fig. 4



M. Tanzadeh Panah and S. M. Hosseini Sarvari , AUT J. Mech. Eng., 6(3) (2022) 415-426, DOI: 10.22060/ajme.2022.20599.6008

420

Table 1. Specifications of two test casesTable 1. Specifications of two test cases 
 

Specification Value 

Length of the square enclosure, L 1 m 

Number of angular meshes (N×N) 10×10 

Number of spatial meshes (Nx×Ny) 10×10 

Number of surface elements over the boundaries 40 

The temperature of wall surfaces 20 K 

x-Location of inclusion 0.4m 0.6mx   

y-Location of inclusion 0.3m 0.5my   
Absorption coefficient for background and inclusion (B , I) for case 1 B =1m-1, I =0.1m-1 

Absorption coefficient for background and inclusion (B , I) for case 2 B =10m-1, I =5.0m-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Inverse reconstruction of the  -distribution in an absorbing-emitting medium with a low absorption coefficient at 

the first step 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

y

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4



Fig. 6. Inverse reconstruction of the  -distribution in an absorbing-emitting medium with a low absorp-
tion coefficient at the first step

limits of the search region for the next step. Hence, for the 
second step, the search region is limited to the region with 
a different resolution with respect to the background. There-
fore, according to the result of the first step, the search region 
is limited to the area where the inclusion is predicted to exist 
there, and the remaining surrounded region is considered as 
background with Bκ κ= . Then, for the second step, the in-
verse procedure is performed over the limited search region 
shown in Fig. 7(a). The result of the inverse reconstruction 

in the second step is shown in Fig. 7(b). As indicated, the 
estimated location of inclusion is well detected for the second 
step. 

The results of the second step for the cases with 1%  and 
3% measurement errors are depicted in Figs. 8(a) and 8(b), 
respectively.The results show more deviation from the exact 
solution, however, the location of inclusion is constructed 
near the exact location.   
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(a) (b) 

Fig.7.  -distribution (a) initial guess, and (b) inverse reconstruction in an absorbing-emitting medium with a low 

absorption coefficient at the second step 
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Fig.7. K -distribution (a) initial guess, and (b) inverse reconstruction in an absorbing-emitting medium with a 
low absorption coefficient at the second step
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Fig. 8. Inverse reconstruction of the  -distribution with (a) 1% error, and (b) 3% error  in an absorbing-emitting medium 

with a low absorption coefficient 
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Fig. 8. Inverse reconstruction of the  -distribution with (a) 1% error, and (b) 3% error  in an absorbing-emitting 
medium with a low absorption coefficient
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Test Case 2: In this case, we assume a thick medium 
with a high absorption coefficient. The absorption coeffi-
cient for the background and inclusion are considered to be 

110mBκ
−=  and 15mIκ

−= , respectively. Like the previous 
case, we consider a uniform initial guess for the absorption 
coefficient. The result for the first step is shown in Fig. 9. 
As seen, the result of the first step is very far from the exact 
solution and worse than that for test case 1. This arises from 
the fact that for thick media the radiative energy is damped 
by the medium before it reaches the wall surfaces where the 

heat fluxes are measured. Hence, according to the result of 
the first step, we consider an alternative initial guess, shown 
in Fig. 10(a), and repeat the inverse procedure. The result of 
the second step is shown in Fig. 10(b). Although, the results 
of the second step show the existence of inclusion, the exact 
location of inclusion is not known yet. Hence, for the third 
step, we limited the search zone to a rectangular shown in 
Fig. 11(a). The result of inverse reconstruction is shown in 
Fig. 11(b). As shown, the location of inclusion is estimated 
exactly after three steps.

 

Fig. 9. Inverse reconstruction of the  -distribution in an absorbing-emitting medium with a high absorption coefficient at 

the first step  
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Fig. 9. Inverse reconstruction of the K -distribution in an absorbing-emitting medium with a high absorption 
coefficient at the first step 
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Figs. 10. -distribution (a) initial guess, and (b) inverse reconstruction in an absorbing-emitting medium with a high 

absorption coefficient at the second step  
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Figs. 10. -distribution (a) initial guess, and (b) inverse reconstruction in an absorbing-emitting medium with a 
high absorption coefficient at the second step 
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10- Conclusion
An inverse approach was presented to estimate the loca-

tion of inclusion with different optical properties in a two-
dimensional absorbing-emitting medium. The radiative trans-
fer equation was solved by the discrete transfer method, and 
the inverse problem to minimize the objective function was 
solved by the conjugate gradient method. The direct and in-
verse problems were linked together to reconstruct the ab-
sorption coefficient distribution. An effective approach was 
used to calculate the sensitivity coefficients by differentiation 
of governing equations with respect to the local absorption 
coefficient. In a square medium with 100 volume elements 
and 10 surface elements on each side, 40 measured heat 
fluxes over the boundary surface were used to recover the 
number of 100 discrete values of absorption coefficients over 
the volume elements. Since the number of measured data was 
less than the number of estimated absorption coefficients, a 
multi-step procedure was applied, where the first step aimed 
to restrict the search region into a smaller region within the 
medium. The results show that the inverse method is success-
ful to reconstruct the location of inclusion for thin media, 
even with noisy data by applying 1%  and 3% measurement 
errors. However, as the radiation problem tends to diffusion 
problem for thick media, the inverse method does not work as 
well as that for thin media.
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Figs. 11.  -distribution (a) initial guess, and (b) inverse reconstruction in an absorbing-emitting medium with a high 

absorption coefficient at the third step 
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M  Number of surface elements 

N  Number of unknown parameters 

Q   Heat flux, W/m2 

S   Sensitivity 

s   Geometric path length, m 

T   Temperature, K 
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   Search step size 
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   Normal distributed random error 

   Measurement error 
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   Stefan-Boltzmann constant  
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j  Ray direction  
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