[1] P. Drazin, Kelvin–Helmholtz instability of finite amplitude, Journal of Fluid Mechanics, 42(2) (1970) 321-335.
[2] H.v. Helmholtz, On discontinuous fluid motions, Phil. Mag, 36(4) (1868) 337-346.
[3] W.S. Thompson, Hydrokinetic solutions and observations, Phil. Mag., (4) (1871) 374.
[4] P. Hazel, Numerical studies of the stability of inviscid stratified shear flows, Journal of Fluid Mechanics, 51(1) (1972) 39-61.
[5] S. Thorpe, A method of producing a shear flow in a stratified fluid, Journal of Fluid Mechanics, 32(4) (1968) 693-704.
[6] S. Thorpe, Experiments on the instability of stratified shear flows: miscible fluids, Journal of Fluid Mechanics, 46(2) (1971) 299-319.
[7] S. Thorpe, Turbulence in stably stratified fluids: A review of laboratory experiments, Boundary-Layer Meteorology, 5(1) (1973) 95-119.
[8] S. Thorpe, Experiments on instability and turbulence in a stratified shear flow, Journal of Fluid Mechanics, 61(4) (1973) 731-751.
[9] S. Thorpe, Transitional phenomena and the development of turbulence in stratified fluids: A review, Journal of Geophysical Research: Oceans, 92(C5) (1987) 5231-5248.
[10] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of computational physics, 100(1) (1992) 25-37.
[11] P. Gondret, M. Rabaud, Shear instability of two-fluid parallel flow in a Hele–Shaw cell, Physics of Fluids, 9(11) (1997) 3267-3274.
[12] S. Mohammadi Masiri, M. Bayareh, A. Ahmadi Nadooshan, Pairwise intercation of drops in shear-thinning inelastic fluids, Korea-Australia Rheology Journal, 31 (2019) 25-34.
[13] H. Terashima, G. Tryggvason, A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, Journal of Computational Physics, 228(11) (2009) 4012-4037.
[14] L. Wang, W. Ye, W.-S. Don, Z. Sheng, Y. Li, X. He, Formation of large-scale structures in ablative Kelvin–Helmholtz instability, Physics of Plasmas, 17(12) (2010) 122308.
[15] M.J. Chen, L.K. Forbes, Accurate methods for computing inviscid and viscous Kelvin–Helmholtz instability, Journal of Computational Physics, 230(4) (2011) 1499-1515.
[16] I. Yilmaz, L. Davidson, F. Edis, H. Saygin, Numerical simulation of Kelvin-Helmholtz instability using an implicit, non-dissipative DNS algorithm, in: Journal of Physics: Conference Series, IOP Publishing, 2011, pp. 032024.
[17] R. Zhang, X. He, G. Doolen, S. Chen, Surface tension effects on two-dimensional two-phase Kelvin–Helmholtz instabilities, Advances in water resources, 24(3-4) (2001) 461-478.
[18] M.S. Shadloo, M. Yildiz, Numerical modeling of Kelvin–Helmholtz instability using smoothed particle hydrodynamics, International Journal for Numerical Methods in Engineering, 87(10) (2011) 988-1006.
[19] M.K. Awasthi, G. Agrawal, Viscous contributions to the pressure for the potential flow analysis of magnetohydrodynamic Kelvin–Helmholtz instability, International Journal of Applied Mechanics, 4(01) (2012) 1250001.
[20] S. Shiryaeva, A. Grigor’ev, S. Sukhanov, On the role of the viscosity of liquids in the realization of Kelvin-Helmholtz instability, Surface Engineering and Applied Electrochemistry, 49(5) (2013) 408-413.
[21] J.E. Matsson, J. Boisselle, A Senior Design Project on the Kelvin–Helmholtz Instability, in: 2015 ASEE Annual Conference & Exposition, 2015, pp. 26.107. 101-126.107. 113.
[22] M.K. Awasthi, Kelvin-Helmholtz instability of viscoelastic liquid-viscous gas interface with heat and mass transfer, International Journal of Thermal Sciences, 161 (2021) 106710.
[23] Q.-f. Fu, X.-d. Deng, L.-j. Yang, Kelvin–Helmholtz instability of confined Oldroyd-B liquid film with heat and mass transfer, Journal of Non-Newtonian Fluid Mechanics, 267 (2019) 28-34.
[24] J. Ghazanfarian, M. Moradi, Hybrid SPH-MD two-phase modelling of 3D free-surface flows introducing double KH instability, Engineering Analysis with Boundary Elements, 88 (2018) 115-131.
[25] M. Esmaeilpour, M. Gholami Korzani, Analyzing Impacts of Interfacial Instabilities on the Sweeping Power of Newtonian Fluids to Immiscibly Displace Power-Law Materials, Processes, 9(5) (2021) 742.
[26] M. Vadivukkarasan, Temporal instability characteristics of Rayleigh–Taylor and Kelvin–Helmholtz mechanisms of an inviscid cylindrical interface, Meccanica, 56(1) (2021) 117-124.
[27] E. Berberovic, Investigation of free-surface flow associated with drop impact: numerical simulations and theoretical modeling, Technische Universität, 2010.
[28] W. Tauber, S.O. Unverdi, G. Tryggvason, The nonlinear behavior of a sheared immiscible fluid interface, Physics of Fluids, 14(8) (2002) 2871-2885.
[29] Z. Goodarzi, A.A. Nadooshan, M. Bayareh, Numerical investigation of off-centre binary collision of droplets in a horizontal channel, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(3) (2018) 1-10.
[30] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of computational physics, 39(1) (1981) 201-225.
[31] T.Y. Hou, J.S. Lowengrub, M.J. Shelley, The long-time motion of vortex sheets with surface tension, Physics of Fluids, 9(7) (1997) 1933-1954.
[32] M. Bayareh, S. Mortazavi, Numerical simulation of the motion of a single drop in a shear flow at finite Reynolds numbers, Iranian Journal os Science and Technology Transaction B-Engineering, 33 (2009) 441-452.