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Numerical Study of Kelvin-Helmholtz Instability of Newtonian and Non-Newtonian 
Fluids
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ABSTRACT: Kelvin-Helmholtz instability is a hydrodynamic instability generated by the relative 
motion of immiscible, irrotational, incompressible, and inviscid fluids. In the present study, the Kelvin-
Helmholtz instability is assessed for Newtonian and non-Newtonian fluids by solving two-dimensional 
Navier-Stokes equations using the finite volume method. ANSYS FLUENT software is used to 
simulate the two-phase flow field. The numerical method is the finite volume method. Using the semi-
implicit method for pressure-linked equations algorithm, the velocity and pressure fields are coupled 
and the Navier-Stokes equations are solved. The second-order upwind method is used to discretize 
the convection terms in Navier-Stokes equations and the central difference method is employed to 
approximate the time derivative. In the case of Newtonian fluids, it was found that for t*>1.5 the growth 
rate of Kelvin-Helmholtz instability depends on the surface tension when the surface tension is in the 
range of 0.000192-0.000993 N/m. The results demonstrate that the critical wavenumber is enhanced 
by increasing the power-law index (n) for shear-thinning and shear-thickening non-Newtonian fluids; 
however, at a specific time, the amount of critical wavenumber for shear-thickening fluids is smaller than 
that for shear-thinning ones. It is also concluded that as the power-law index increases, the wave stability 
can be reached more rapidly.
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1- Introduction
Low-viscosity flows become turbulent faster than the 

high-viscosity ones. In some cases, the flow instabilities in-
tensify until the flow becomes turbulent. For example, if a 
layer of heavy fluid, such as water, moves over a layer of 
lighter fluid, such as oil, the instability called Rayleigh-Tay-
lor Instability (RTI) is created, leading to flow turbulence. 
Another type of instability called Kelvin-Helmholtz Instabil-
ity (KHI) occurs when two layers of fluid move in opposite 
directions with different velocities. This condition can also 
cause disturbances in the interface of fluids. The main mecha-
nism for the development of KHI is the existence of a uni-
form shear that does not require gravity or density difference. 
Therefore, these effects, as well as surface tension and viscos-
ity, are often not considered in numerical studies to simplify 
the calculations [1].

KHI was first studied by Hermann von Helmholtz [2] and 
William Thomson (Lord Kelvin) [3] and the linear stability 
was numerically studied by Hazel [4]. Thorpe’s group [5-9] 
investigated the KHI by tilting a tube containing two liquids 
of different densities. Their experiment [7] consisted of a 
glass channel containing two different incompressible liquids 
of similar density. The liquids were water and a mixture of 
commercial tetrachloride and paraffin. Initially, the tube was 
filled with both liquid layers with the same initial height. Once 

the fluids were settled, the channel tilted at an angle of sin α 
= 0.072, resulting in the motion of a wavy flow that caused 
the KHI to form. Unverdi and Tryggvason [10] described a 
method for simulating unstable multi-phase flows in which 
a critical interface separates incompressible liquids of differ-
ent densities and viscosities. The flow field was discretized 
with a finite difference approximation on a stationary grid, 
and the interface was explicitly represented by a separate 
unstructured grid moving through a fixed one. Gondret and 
Rabaud  [11] experimentally investigated the parallel flow 
of two immiscible liquids in a Hele-Shaw cell and reported 
that the instability threshold in the liquid-liquid interface is 
controlled by inertial force, while the wave velocity and its 
growth rate are controlled by the viscosity. Mohammadi Ma-
siri et al. [12] investigated the impact of non-Newtonian fluid 
flow on the interaction between two drops using the front 
tracking method. This technique can be employed to model 
the interface. Terashima and Tryggvason [13] introduced a 
front-tracking method to simulate the interface of a fluid in 
a compressible flow. Their results revealed that their method 
can simulate multiphase flows for a wide range of compres-
sion ratios and surface tension. Wang et al. [14] studied the 
numerical nonlinear evolution of KHI with and without ther-
mal conductivity and demonstrated that the growth of KHI 
of small-scale structures is reduced with thermal conductiv-
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ity while the vortex coupling process is enhanced. Chen and 
Forbes [15] modeled the KHI for inviscid and viscous liquids 
that were parallel to each other using a spectral method and a 
finite difference scheme. They showed that the convergence 
of the viscous model depends on the quasi-time step strongly. 
Yilmaz et al. [16] calculated the growth rate of instability in 
KHI using a DNS algorithm and demonstrated that the inter-
face of compressible fluids is unstable when much number is 
equal to or less than one. Zhang et al. [17] studied two-dimen-
sional KHI using a lattice Boltzmann multi-phase model for 
incompressible fluids and expressed that the contribution of 
surface stress to the kinetic energy and flow enstrophy is neg-
ative and positive, respectively. Their results showed that the 
nonlinear behavior of the two-phase combination is affected 
by surface tension. As the surface tension increases (the cap-
illary number decreases), the flow field interactions become 
more intense. Shadloo and Yildiz [18] investigated the effects 
of Richardson number and density ratio on the development 
of KHI of two incompressible, immiscible, and inviscid liq-
uids using the smooth particle hydrodynamics method and 
observed that the total growth rate of KHI is largely controlled 
by the value of the Richardson number. Kumar Awasthi and 
Agrawal [19] studied the contribution of viscosity to pressure 
to analyze the KHI of viscous potential flow with a tangential 
magnetic field at the interface of two viscous liquids and ob-
served that irrotational shear stresses have a constant effect on 
system stability. Shiryeva et al. [20] analyzed an ideal model 
of two incompatible liquids so that bottom and top viscous 
liquids moved at a constant velocity parallel to the interface. 
They showed that the viscosity of the two liquids reduces the 
damping of the waves on the interface. Matsson and Bois-
selle [21] developed and tested the KHI and showed that the 
instability is developed for 3 seconds when the tube was tilted 
8 degrees relative to the horizontal axis. 

For the case of Newtonian fluids, the KHI is affected by 
surface tension, fluid velocity, heat transfer rate, fluids viscos-
ity, fluid thermal conductivity, and fluid density. Even though 
the stability of non-Newtonian fluids is pivotal in practical 
applications, a few investigators have assessed the stability of 
the non-Newtonian liquid-liquid (gas) interface. For instance, 
Awasthi [22] utilized the Oldroyd-B model to analyze the im-
pact of heat and mass transfer on the KHI of the viscoelastic 
liquid-viscous gas interface. It was demonstrated the range 
of stable wave numbers is reduced when heat transfer is en-
hanced. Fu et al. [23] used the same model and confirmed the 
conclusions of Awasthi [22]. Besides, they showed that the 
maximum growth rate increases with the Reynolds number. 
Ghazanfarian and Moradi [24] employed Smoothed-Particle 
Hydrodynamics (SPH) and Molecular Dynamics (MD) and 
proposed a new KHI with three layers of parallel flow. They 
observed that the stability of the water-water interface is 
smaller than the water-air interface. Esmaeilpour and Ghol-
ami Korzani [25] evaluated the impact of the power-law in-
dex on the interfacial instability of fluids. They found that the 
finger structure is affected by buoyancy, inertial, and viscous 

forces. Vadivukkarasan [26] examined the combined impact 
of Rayleigh-Taylor instability (RTI) and KHI of an inviscid 
cylindrical interface and concluded that the Bond number can 
predict the growth rate and axial wavenumber appropriately.      

Although the dynamics of KHI for Newtonian and even 
viscoelastic fluids have been described, the displacement of 
non-Newtonian fluid by another one has not been analyzed. 
To the best of the authors’ knowledge, the stability of shear-
thinning and shear-thickening fluids is considered in the cur-
rent study for the first time. The present study aims to study 
KHI for non-Newtonian liquids using ANSYS FLUENT soft-
ware numerically. Liquids are assumed to be incompressible 
and immiscible and the flow is unsteady. The effect of differ-
ent parameters on KHI is investigated for shear-thinning and 
shear-thickening fluids. The rest of the paper is organized as 
follows: Sec. 2 presents the equations that govern the prob-
lem. The numerical method is described in Sec. 3, and Sec. 
4 provides the results, including grid study, verification, and 
discussions. Finally, concluding remarks are presented in 
Sec. 5.

2- Governing Equations
The geometry of the present problem is shown in Fig. 1. 

Two immiscible liquid streams are in contact with each other. 
The top liquid has the density and viscosity of ρ1 and μ1, re-
spectively, and moves with the velocity of U1. The bottom 
one has the density and viscosity of ρ2 and μ2, respectively, 
and has the velocity of U2. These two velocities with opposite 
directions are caused by the tilt of the enclosure. 

 
Fig. 1. Schematic of the present problem, L = 2.4 m and H = 0.2 m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic of the present problem, L = 2.4 m and 
H = 0.2 m.
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The continuity and momentum equations for an incom-
pressible and immiscible fluid flow are as follows [17] :Equations typed in MathType Equation number Page 
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where u is the velocity vector, ρ is the density, p is the 
pressure, τ is shear stress, and Fs is the force due to surface 
tension [27]. The surface tension model used in the simula-
tions is the Continuous Surface Force (CSF) model: 
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where α is the volume fraction defined as the ratio of the 
volume of each phase to the cell volume. Surface tension is 
calculated on the interface and is perpendicular to the surface. 
The curvature of the interface is calculated as follows: 
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The power-law model is used to evaluate the KHI of 
shear-thinning (n < 1), shear-thickening (n > 1), and Newto-
nian fluids (n = 1), where  is the power-law index:
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3- Numerical Method
The assumptions used in the present simulations are as 

follows:
- Newtonian/non-Newtonian fluids are incompressible.
- Fluid flow is considered to be fully developed.
- Fluids are immiscible.
- At the interface between the two fluids, no phase change 

occurs.
Fluid properties including density, surface tension, and 

viscosity are assumed to be constant.
Since the density and viscosity of the two fluids are differ-

ent, the material derivative of density and viscosity of each 
fluid particle is assumed to be zero to track their evolution 
by state equations. To determine the situation of the inter-
face between the different phases, a marker function is used 
to reconstruct the phase boundary. Thus, the Volume Of Fluid 
(VOF) approach is employed to simulate the KHI of New-
tonian and non-Newtonian fluids. An indicator function, i.e. 
volume fraction, is used to characterize the two phases. Thus, 
the density and viscosity of each phase can be determined as 
follows [29]: 
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In the VOF method, the volume fraction follows the fol-
lowing pattern, when the cell is occupied by liquid phase: α 
= 1, when the cell includes the interface: 0 < α < 1, and when 
the cell is occupied by air phase: α = 0. α is calculated using 
Eq. (13) [30]:
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In the present work, ANSYS FLUENT software is used 
to simulate the two-phase flow field. The numerical method 
is the finite volume method. Using the Semi-Implicit Method 
for Pressure-Linked Equations (SIMPLE) algorithm, the ve-
locity and pressure fields are coupled and the Navier-Stokes 
equations are solved. The second-order upwind method is 
used to discretize the convection terms in Navier-Stokes 
equations and the central difference method is employed to 
approximate the time derivative. Besides, the volume frac-
tion is modeled using the Geo-Reconstruct method. To begin 
with instability, a small disturbance is applied to the interface 
using a user-defined code. MATLAB software is employed to 
analyze the results since the output of the Fourier transform 
for spatial data is wave number and for temporal data is fre-
quency. The interface data is given to MATLAB software to 
plot the wavenumber of spatial data and obtain the wavenum-
ber. Then, the relevant diagrams are drawn using the Tecplot 
software. Besides, it should be pointed out that the conver-
gence criterion is 10-7.

4- Results
In this section, the KHI of Newtonian and non-Newtonian 

fluids flowing in a two-dimensional rectangular cavity is in-
vestigated. First, the validation of the results and the indepen-
dence of the solution from the number of grid points are in-
vestigated. Then, the KHI of Newtonian and non-Newtonian 
fluids is analyzed for different conditions. 

4- 1-  Grid study
The results of the numerical solution must be independent 

of the number of cells used in the computational domain. The 
number of cells must be sufficient on the one hand to capture 
the hydrodynamics of the fluid flow, and on the other hand to 

reduce the computational cost by determining a reasonable 
minimum number of cells. Hence, the water volume fraction 
is calculated using four computational grids (grids 1 to 4). 
Grid 1, grid 2, grid 3, and grid 4 have 4800, 14700, 19200, 
and 30,000 cells, respectively. Fig. 2a shows that the change 
in computational grid size has a small effect on the simula-
tions. According to this figure, the grid resolution of 19200 
is selected for further simulations. Besides, Fig. 2b compares 
the volume fraction of liquids for different grid resolutions 
and demonstrates that the thickness of the interface is reason-
able for grid 3 and grid 4.

4- 2-  Validation
To verify the present simulations, the numerical results 

of Tauber et al. [28] and experimental data of Thorpe [6] are 
employed. Tauber et al. [28] evaluated the breakup of im-
miscible fluids’ interface using the front-tracking approach 
at finite Reynolds numbers. The fluids were moving with 
different velocities in opposite directions (like Fig. 1). The 
top and the bottom walls are rigid and the sidewalls have a 
periodic boundary condition when H is twice the wavelength 
and L is equal to the wavelength. The amplitude normalized 
by the wavelength is plotted in Fig. 3a when the density ratio 
is unity and we=(ρ2 ∆U2)⁄(σκ=6) . According to linear theory, 
the wave growth is rapidly for a dimensionless time less than 
30. As the finger structure stops growing, the amplitude is re-
duced. Fig. 3a demonstrates that the present simulations can 
predict the variations of normalized amplitude at different 
non-dimensional times.

Qualitatively, the present results are compared with the 
experimental observations of Thorpe [6], who investigated 
the instability of stratified shear flows. It was reported that 
the system is unstable when
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Fig. 2. (a) Water volume fraction versus time for different grid resolutions, (b) concentration contours for different grid 

resolutions when r = 0.93, m = 0.79, Re1 = 1.49, and Re2 = 1.19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) Water volume fraction versus time for different grid resolutions, (b) concentration contours 
for different grid resolutions when r = 0.93, m = 0.79, Re1 = 1.49, and Re2 = 1.19.
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Fig. 3b shows the Fourier analysis of horizontal velocity 
at the interface between t =1.4 s and t =3 s. Fourier transforms 
are obtained using the Fast Fourier Transform (FFT) algo-
rithm. The figure reveals that the onset time of instability is 
1.6 < t < 1.7 s because the growth rate between these values 
is considerable. This is consistent with the results of Thorpe 
[6]. Besides, the critical wavelength is measured as λcr= 44 
mm when critical wave number is kcr = 142.8 m. This value 
was reported by Thorpe [6] in the range of 25-45 mm when 
kcr = 197 ± 58 m. Thus, the calculated values are in agreement 
with the results of Thorpe [6]. 

4- 3- KHI of Newtonian fluids (n = 1)
In this section, the evolution of the interface between wa-

ter and saltwater is considered, where their density and kine-
matic viscosity are presented in Table 1.

 

  

(a) (b) 

Fig. 4. (a) Normalized amplitude versus dimensionless time for r = 1, Re1 = 5000, and Re2 = 10000, and We = 6, (b) Fourier 

analysis of horizontal velocity at the interface between t = 1.4 s and t = 3.0 s for r = 0.93, m = 0.79, Re1 = 1.49, and Re2 = 

1.19. 
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Fig. 4. (a) Normalized amplitude versus dimensionless time for r = 1, Re1 = 5000, and Re2 = 10000, and We = 
6, (b) Fourier analysis of horizontal velocity at the interface between t = 1.4 s and t = 3.0 s for r = 0.93, m = 

0.79, Re1 = 1.49, and Re2 = 1.19.

Table 1. Properties of Newtonian fluids.Table 1. Properties of Newtonian fluids. 

Saltwater Water  

𝜈𝜈2 (m2/s) 𝜌𝜌2 (kg/ m3) 𝜈𝜈1 (m2/s) 𝜌𝜌1 (kg/m3) 

0.001259 1074.79 0.001002 998.2 
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4- 3- 1- Effect of surface tension
Fig. 4 shows the time evolution of concentration contours 

for different surface tension coefficients. When σ = 0.000993 
N/m, the initial disturbance grows rapidly and the wave be-
comes steeper in the early stages. The peak moves clockwise 
inward, creating vortices inside the wave. Besides, the shear 
layer thickness is increased due to the adhesive diffusion. The 
separation of the vertex from the wave peak, which can be ob-
served at t = 4.5 and 5 s, reduces the minimum local pressure 
above the peak. As the surface tension is reduced to 0.000576 
N/m, the initial evolution of the perturbation wave is the same 
as σ = 0.000993 N/m. When the perturbation wave amplitude 
increases, the perturbation wave is reversed backward, re-
sulting in the formation of finger structures. These structures 
were reported by Hou [31] and Tauber et al.[28]. At t =5 s, 
some vortices move from the peak of the wave and are placed 
in front of the finger-shaped structure. These vortices are rela-
tively weak and dissipated rapidly. At a later time, t =5.5 s, 
the vortices are released again from the fingers. In this case, 
the instability at the interface grows with a larger amplitude 
than in the previous state due to the weaker effect of surface 
tension. As the shear layer thickens is enhanced, surface ten-
sion eventually pushes the interface forward, causing vortices 
to remain and move through both fluids (t =6 s). This is due to 
the vortex shedding from the finger-shaped part of the inter-
face. When σ = 0.000288 N/m, the fluid that accumulates at 
the tip of each finger forms a drop. The drop is attached to the 
rest of the finger by a thin string (t=5.5 s) and in some cases, 
the drop is completely detached (t=6.5 s). The best time to 
release the vortices from the finger is when the peak of the 
finger-shaped part of the interface turns forward. At intervals 
of 5 and 6 s, the vortices released from the finger-shaped part 
are more stable than the ones created at the initial time. For σ 
= 0.000192 N/m, the effect of a small amount of surface ten-
sion can be observed at t=5 s, causing the highest part of the 
wave to be pulled more and move towards the finger, leading 

to the creation of clockwise vortices inside the wave. At t = 6 
and 5.5 s, the wave is a finger-shaped part of the interface is 
the same as in the previous cases. 

The difference between the maximum and minimum dis-
tances of the wave from each other is calculated by the fol-
lowing relation:
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Fig. 5 illustrates A(t) normalized by wavelength versus 
dimensionless time for different surface tensions. The figure 
reveals that dimensionless amplitude is the same for different 
surface tensions for t*≤1.5. . Therefore, for t*>1.5 and this 
range of surface tension, the growth rate of KHI depends on 
the surface tension.

Two cases are explained by comparing Figs. 4 and 5. For 
σ = 0.000993 N/m, after the initial time (t*=1.5), the KHI 
begins and the amplitude decreases. Then, as the saltwater 
moves towards the right, the amplitude is increased. At t*=2 
, when the vortex shedding from the peak of the wave oc-
curs, followed by the weakening of the shear rate and surface 
tension, normalized amplitude becomes maximum. Then, the 
motion of the wave to the right causes another fluid to place 
on the wave and push it. Thus, the amplitude of the wave is 
reduced and has a downward trend until the last dimension-
less time. When the surface tension coefficient is 0.000576 
N/m, the wave is growing until t*=1.7. The amplitude de-
creases with the formation of the wave and then the oscil-
lations continue with the movement of the lower fluid to the 
left. At t*=2, when the vortex sheds from the wave peak and 
the consequent weakening of the shear rate, the amplitude 
decreases and will decline until t*=2.15, after which the wave 
continues to fluctuate.

 

 

σ = 0.000993 N/m σ = 0.000576 N/m σ = 0.000288 N/m σ = 0.000192 N/m 

    
t = 4 s 

    
t = 4.5 s 

    
t = 5 s 

    
t = 5.5 s 

    
t = 6 s 

 

Fig. 5. Time evolution of concentration contours for different surface tension coefficients r = 0.93, m = 0.79, Re1 = 1.49, and 

Re2 = 1.19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Time evolution of concentration contours for different surface tension coefficients r = 0.93, m = 0.79, 
Re1 = 1.49, and Re2 = 1.19.
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Fig. 6. Normalized 𝐴𝐴(𝑡𝑡) as a function of dimensionless time for different values of surface tension for r = 0.93, m = 0.79, 

Re1 = 1.49, and Re2 = 1.19.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Normalized A(t) as a function of dimensionless time for different values of surface tension for r = 0.93, 
m = 0.79, Re1 = 1.49, and Re2 = 1.19. 

4- 4- KHI of non-Newtonian fluids
In this section, KHI of non-Newtonian fluids is consid-

ered, when k1 = 0.04, k2 = 0.01, and r = 1.08.

4- 4- 1- Effect of power-law index
The rheology of non-Newtonian fluids is determined by the 
power-law equation [32]. In this section, the KHI of shear-
thinning (n < 1) and shear-thickening (n > 1) non-Newtonian 
fluids are evaluated when r = 1.08. The characteristic of shear-
thinning fluids is such a way that the rate of deformation 
increases with the strain rate. In other words, the viscosity 
of these fluids decreases by increasing the strain rate. But, 
shear-thickening fluids behave in contrast to shear-thinning 
ones so that their deformation rate decreases with the strain 
rate. In other words, the viscosity of these fluids increases by 
increasing the strain rate. 

Figs. 6a, b, and c illustrate the Fourier analysis of the hori-
zontal velocity at the interface between t = 1.4 s and t = 3 s 
for n = 0.2, 0.4, and 0.8, respectively. Fourier transforms are 
obtained using FFT algorithm. Fig. 6a shows that similar to 
Newtonian fluids, the instability increases up to 1.8 s when 
the wavelength is 20 mm. After that, the instability decreases 
and then increases again and reaches a wavelength of 22 mm 
when t > 2. When the wavelength reaches 32 mm, the curves 
increase sharply, indicating that the interface does not change 
significantly. In addition, the matching of the critical wave-
length with the most unstable wavenumber can be evaluated 
at 20 mm, where the critical wave number is 314.2 m. The 
amplitude of the critical waves can be considered as λcr= 
18-22 mm. In Fig. 6b, the Fourier analysis is plotted for the 

horizontal velocity at the interface between t=1.4 s and t=3 s 
for n = 0.4. This figure shows that there is instability in the 
interface up to a wavelength of 26 mm. After that, the curves 
increase sharply, indicating that the interface does not change 
significantly. The matching of the critical wavelength with 
the most unstable wavenumber can be evaluated at 18 mm, 
where the critical wave number is 349.1 m. The amplitude 
of the critical waves is in the range of λcr =16-22 mm. Fig. 6c 
shows the Fourier analysis of the horizontal velocity at the 
interface between t = 1.4 s and t = 3 s for n = 0.8. The figure 
reveals that there is instability in the interface up to 22 mm 
wavelength. After that, the interface does not change signifi-
cantly. Besides, the matching of the critical wavelength with 
the most unstable wavenumber can be evaluated at 16 mm 
(the critical wave number is 392.7 m). The amplitude of the 
critical waves is λcr =16-22 mm.

In general, for shear-thinning non-Newtonian fluids, it 
can be concluded that the amount of wavelength after which 
the interface does not change decreases with the power-law 
index. Also, as n is enhanced, the critical wave number in-
creases.

Figs. 7a, b, and c show the Fourier analysis of the hori-
zontal velocity at the interface between t = 1.4s and t = 3s for 
n = 1.2, 1.6, and 1.8, respectively. Fig. 7a shows that there 
is instability in the interface up to a wavelength of 22 mm. 
After that, the interface does not change significantly. The 
matching of the critical wavelength with the most unstable 
wavenumber can be evaluated at 14 mm, where the critical 
wave number is 448.8 m. The amplitude of the critical waves 
can be considered a λcr =12-16 mm. In Fig. 8b, the Fourier 
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(a) 

  

(b) 

  

(c) 

Fig. 6. Fourier analysis of the horizontal velocity at the interface versus wavelength between t = 1.4 s and t = 3 s for 
(a) n = 0.2, (b) n = 0.4, and (c) n = 0.8.
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(b) 

  

(c) 

Fig. 7. Fourier analysis of the horizontal velocity at the interface versus wavelength between t = 1.4 s and t = 3 s 
for (a) n = 1.2, (b) n = 1.6, and (c) n = 1.8.
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analysis of the horizontal velocity at the interface is plotted 
between t = 1.4 s and t = 3 s for n = 1.6. This figure shows 
that there is instability in the interface up to the wavelength 
of 26 mm. After that, the interface does not change consider-
ably. The matching of the critical wavelength with the most 
unstable wavenumber can be evaluated at 12 mm (critical 
wave number is 523.6 m. The amplitude of the critical waves 
is in the range of  λcr =12-14 mm. Finally, Fig. 8c shows the 
Fourier analysis of the horizontal velocity at the interface be-
tween t = 1.4 s and t = 3 s for n = 1.8. The figure shows that 
there is instability in the interface up to 32 mm wavelength, 
but after that, the interface varies slightly. Also, the matching 
of the critical wavelength with the most unstable wavenum-
ber can be evaluated at 14 mm, considering that the critical 
wave number is equal to 448.8 m. The amplitude of the criti-
cal waves can be considered as  λcr =12-16 mm.

In general, for shear-thickening non-Newtonian fluids, it 
can be concluded that the amount of wavelength after which 
the interface does not change increases with the power-law 
index.

4- 4- 2-  Effect of surface tension
To evaluate the effect of surface tension on the KHI, 

four surface tensions of 0.04 N/m, 0.004 N/m, 0.0008 N/m, 
and 0 N/m are considered when n = 0.2. The linear invis-
cid theory states that the most unstable wavelength decreases 
by decreasing the surface tension. For 0 N/m, infinite wave 
numbers are possible. Fig. 8 shows the Fourier analysis of 
the horizontal velocity at the interface for σ = 0 N/m. In the 
beginning, the critical wavelength is 12 mm. Then, the sec-
ond wave is generated with a wavelength of 25 mm. For t > 
1.1 s, the two primary wavelengths are transmitted to higher 

wavelengths of λcr =16 mm and   λcr =42 mm.
The horizontal velocity of the interface relative to the 

chamber height is plotted for surface tensions of 0.004 N/m 
and 0.0008 N/m at several different times in Fig.9. For σ = 
0.004 N/m, the velocity profile is asymmetric, indicating that 
the velocity of the lighter liquid increases significantly at a 
specific height of the chamber. However, the velocity of the 
heavier liquid remains almost unchanged. As the surface ten-
sion decreases, i.e. σ = 0.0008 N/m, the interface velocity 
profile exhibits symmetrical behavior. 

5- Conclusions
The present paper analyzes the KHI of Newtonian and 

non-Newtonian fluids numerically. Liquids are assumed to be 
incompressible and immiscible and the flow is unsteady. The 
effect of surface tension and power-law index on KHI is inves-
tigated for shear-thinning and shear-thickening fluids. In the 
case of Newtonian fluids, the results reveal that dimension-
less amplitude is the same for different surface tensions for 
t*≤1.5 when σ = 0.000993-0.000192 N/m, indicating that the 
growth rate of KHI depends on the surface tension at t*>1.5. 
For shear-thinning non-Newtonian fluids, it is concluded 
that the amount of wavelength after which the interface does 
not change decreases with the power-law index. For shear-
thickening non-Newtonian fluids, the results demonstrate that 
the amount of wavelength after which the interface does not 
change increases with the power-law index. When n = 0.2 and 
σ = 0.004 N/m, the velocity profile is asymmetric, showing 
that the velocity of the lighter liquid increases significantly 
at a specific height of the chamber. As the surface tension 
decreases, the interface velocity profile exhibits symmetrical 
behavior.

  

 

Fig. 9. Fourier analysis of the horizontal velocity at the interface versus wavelength between t = 0.7 s and t = 1.4 s for n = 

0.2 and σ = 0.0 N/m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Fourier analysis of the horizontal velocity at the interface versus wavelength between t = 0.7 s and t = 1.4 s 
for n = 0.2 and σ = 0.0 N/m.
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Fig. 9. Horizontal velocity versus height between t = 0.6 s and t = 2.0 s for n = 0.2 and (a) σ = 0.004 N/m and 
(b) σ = 0.0008 N/m.
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