[1] D. Korteweg, Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Röhren, Annalen der Physik, 241(1878), 525–542.
[2] H. Helmholtz, Report on theoretical acoustics concerning works of the years 1848 and 1849, Gesammelte wissenschaftliche Abhandlungen 1(1882), 233–255.
[24] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids. Vol. 1: Fluid mechanics, (1987).
[3] R. Skalak R, An extension of the theory of water hammer. Tech. rep. Columbia Univ. New York Dept of Civil Engineering and Engineering Mechanics, (1954).
[4] D.Wilkinson, The Dynamic Response of Pipework Systems to Water Hammer, (1980).
[5] J. Walker, J. Phillips, Pulse propagation in fluid-filled tubes. Journal of Applied Mechanics 44(1977), 31–35.
[6] R A.Valentin R A, J. Phillips, J. S Walker, Reflection and transmission of fluid transients at an elbow. Tech. rep., Argonne National Lab., IL (USA), (1979).
[7] D. Wiggert, F. Hatfield, S. Stuckenbruck, Analysis of liquid and structural transients in piping by the method of characteristics, (1987).
[8] D. Wiggert, Coupled transient flow and structural motion in liquid-filled pipingsystems: a survey. In: Proceedings of the ASME Pressure Vessels and Piping Conference. Chicago, USA, (1986).
[9] I-B. Joung, Y. Shin , A new model on transient wave propagation in fluid-filled tubes, Journal of Pressure Vessel Technology, 109(1987) 88–93.
[10] W. Bürmann, H. Thielen, Measurement and computation of dynamic reactive forces on pipes containing flow. Three R Int;(Germany, Federal Republic of), 27(1988).
[11] D. Wiggert, A. Tijsseling, Fluid transients and fluid-structure interaction in flexible liquid-filled piping, Applied Mechanics Reviews 54(2001) 455–481.
[12] A. Tijsseling, Exact solution of linear hyperbolic four-equation system in axial liquid-pipe vibration, Journal of Fluids and Structures 18 (2003), 179–196.
[13] A. Keramat, A. Tijsseling, Waterhammer with column separation, fluid-structure interaction and unsteady friction in a viscoelastic pipe, International Conference on Pressure Surges, Lisbon, Portugal, (2012).
[14] A. Keramat, A. Tijsseling, Q. Hou, A. Ahmadi, Fluid-structure interaction with pipe-wall viscoelasticity during water hammer, Journal of Fluids and Structures, 28 (2012), 434–455.
[15] L. Hadj-Taïeb, E. Hadj-Taïeb, Numerical simulation of transient flows in viscoelastic pipes with vapor cavitation. International Journal of Modelling and Simulation 29(2009), 206–213.
[16] F. Khalighi, A. Ahmadi, A. Keramat, Investigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods, Int. J. Eng. Trans. B Appl, 29 (2016) 590-598.
[17] A. Groisman, M. Enzelberger, S. Quake, Microfluidic Memory and Control Devices, Sci., 300(2003), 955-958.
[18] A. Morozov, W. Saarloos, Non-equilibrium physics: From complex fluids to biological systems I. Instabilities and pattern formation, Phys. Reports, 447(2007), 112 – 143.
[19] S. Sedussuriya, A. Jwilliams , C. Bailey, A cell-centred finite volume method for modelling viscoelastic flow, J. Non-Newtonian Fluid Mech., 117(2004), 42-61.
[20] E. Wahba, Runge–Kutta timeāstepping schemes with TVD central differencing for the water hammer equations, International journal for numerical methods in fluids, 52(5) (2006) 571-590.
[21] D. F. Segura Fluid-structure interaction during hydraulic transients in pressurized pipes: experimental and numerical analyses, Laboratoire de Constructions Hydrauliques, (2016).
[22] E. Wahba, Non-Newtonian fluid hammer in elastic circular pipes: Shear-thinning and shear-thickening effects, Journal of Non-Newtonian Fluid Mechanics, 198 (2013) 24-30.
[23] D. Niedziela. On numerical simulations of viscoelastic fluids”, Phd thesis, Naturwissenschaften, (2006).
[24] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids. Vol. 1: Fluid mechanics, (1987).
[25] L.F. Shampine, Two-step Lax–Friedrichs method, Applied Mathematics Letters, 18(10) (2005) 1134-1136.
[26] E. Holmboe, W. Rouleau, The effect of viscous shear on transients in liquid lines, Journal of Basic Engineering, 89(1) (1967) 174-180.
[27] E. Wahba, Modelling the attenuation of laminar fluid transients in piping systems, Applied Mathematical Modelling, 32(12) (2008) 2863-2871.
[28] E. Wahba, Modelling the attenuation of laminar fluid transients in piping systems, Applied Mathematical Modelling, 32(12) (2008) 2863-2871.
[29] B. Norouzi B., A. Ahmadi, M. Norouzi & M. Lashkarbolouk, Numerical modeling of the fluid hammer phenomenon of viscoelastic flow in pipes, Journal of the Brazilian Society of Mechanical Sciences and Engineering. 41(2019), 543-557.
[30] B. Norouzi, A. Ahmadi, M. Norouzi, M. LashkarBolook, Modeling of an Upper-Convected-Maxwell fluid hammer phenomenon in the pipe system, AUT Journal of Mechanical Engineering. 4(2020); 31-40.
[31] A. Bergant, A.S.Tijsseling, J.P. Vítkovský, D. Covas, A.R. Simpson, and M.F. Lambert, , Parameters affecting water hammer wave attenuation, shape and timing. Part 2: Case studies, Journal of Hydraulic Research, IAHR, 46(2008), 382–391.