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ABSTRACT: Viscoelastic fluid hammer is a type of fluid hammer in which a viscoelastic non-
Newtonian fluid flows in a pipeline. In this study, the fluid-structure interaction in this phenomenon is 
investigated. The governing equations are viscoelastic fluid and structure equations which are coupled 
together. Viscoelastic fluid equations consist of continuity and momentum which govern the transitional 
flow in the pipes. Oldroyd-B model is used as the constitutive equation. This model is suitable for 
dilute viscoelastic solutions and Boger liquids. Structural equations include pipe axial velocity and 
stress equations. A two-step variant of the Lax-Friedrichs method is used to simulate fluid-structure 
interaction in a reservoir-pipe-valve system. A viscoelastic fluid polymer is selected and the behavior 
of the polymer pressure head and shear stresses during fluid hammer is investigated. Three types of 
couplings were examined. Junction, Poisson, and the combination of two aforementioned couplings 
called junction and Poisson coupling. The effects of these couplings for the fluid are modeled in three 
states. ideally, Newtonian and viscoelastic. The fluid viscosity in Newtonian and viscoelastic states is 
considered the same. The results of the study show that the imposed shear stresses with viscoelastic 
fluid are significantly lower than those in the Newtonian state. Comparing coupling effects during fluid 
hammer is found that the lowest shear stresses are assigned to Poisson coupling.
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1- Introduction
Fluid-Structure Interaction (FSI) is an interdisciplinary 

subject related to fluid dynamics and structural dynamics. In 
the process of FSI, the solid deforms or moves, forced by the 
weight of the surrounding fluid. The flow domain then var-
ies according to the deformed or moved solid, which in turn 
changes the flow field. The first studies in the field of fluid-
structure interaction in transient pipe flow were conducted in 
the 19th century when authors like Korteweg [1] or Helmholtz 
[2] recognized the need to consider both of the interacting 
mechanisms of fluid compressibility and pipe-wall distensi-
bility. The classical water-hammer theory is also based on this 
principle. Since then, many scientists have added their con-
tributions in building up and shaping the theory of hydraulic 
transients in pipe flow. Skalak [3] inspected the FSI research 
in the two-way coupling between fluid dynamics and struc-
tural mechanics. Wilkinson [4] studied the dynamic response 
of pipework systems during the water hammer phenomenon 
and investigated pressure wave behavior in transitional flow. 
Walker & Phillips [5] a new theory for the propagation of 
pressure pulses in an inviscid compressible fluid contained 
in a thin-walled elastic tube was presented. Their new theory 
was applied to a water-filled copper tube. Valentin et al. [6], 
analyzed the reflection and transmission of fluid transients at 
an elbow in the pipe. He coupled fluid and structure equa-

tions during the water hammer. Wiggert et al. [7,8] studied 
fluid-structure Interaction seriously. He analyzed liquid and 
structural transients in piping using the method of characteris-
tics. In the next study, he introduced coupling equations and 
coupled transient flow and structural motion in liquid-filled 
piping systems. Joung & Shin [9], developed a new model 
on transient wave propagation in fluid-filled tubes. Their new 
model was taken into account the shear and flexural waves 
of the elastic tube and Walker-Phillips’ theory could be re-
covered as a special, limiting case. Burmann & Thielen [10], 
Measured and computed the dynamic reactive forces on pipes 
containing flow during transitional flow in the pipes. Wiggert 
& Tijsseling [11] simulated fluid transients and fluid-structure 
interaction in flexible liquid-filled piping. Their model result-
ing in improved techniques is readily available to predict FSI 
and present relevant data that describe the phenomenon. Tijs-
seling [12] introduced FSI four-equation model. He defined 
two equations for the liquid which are coupled to two equa-
tions for the pipe, through terms proportional to the Poisson 
contraction ratio, and through mutual boundary conditions. 
In his model, the exact solutions were used to investigate the 
error due to numerical interpolations and wave speed adjust-
ments, with emphasis on the latter. Considering the achieve-
ments and results from these studies, sub-theories improving 
the basic assumptions are added, such as unsteady friction 
[13], pipe-wall viscoelasticity [14], cavitation [15], and the *Corresponding author’s email: norouzi@lameigorgani.ac.ir

                                  
   Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article                                                  

                                is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, 
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.



B. Norouzi et al., AUT J. Mech. Eng., 6(1) (2022) 95112, DOI: 10.22060/ajme.2021.20217.5994

96

effect of different couplings [16]. In this work, the fluid-struc-
ture interaction is considered in the case in which, instead of 
water, a non-Newtonian viscoelastic fluid flows in the pipe, 
and therefore, this group of equations can be called Viscoelas-
tic Fluid-Structure Interaction (VFSI) which is investigated 
during Viscoelastic Fluid Hammer. The term Viscoelastic 
fluid hammer speaks of transients of viscoelastic fluids which 
are caused by a sudden alteration in the conditions of flow. 

Viscoelastic behavior of fluid is dominant in an extensive 
range of applications including food processing, pharmaceu-
ticals, the casting industry, and the chemical industry. One 
of the important applications of viscoelastic fluids is in mi-
crofluidic devices, for example, microfluidic rectifiers [17] 
which use viscoelastic materials as working fluid. A great 
portion of biological fluids in nature display viscoelastic be-
havior. Thus it is important to understand the dynamics of 
viscoelastic fluids. In chemical and process industries, it is 
often required to pump fluids through the pipe from stor-
age to various processing units and/or from one plant site to 
another and considering issues associated with stopping the 
flow in the pipe suddenly is necessary. Numerical simulation 
has become a powerful method in studying the original phys-
ics of viscoelastic behavior of fluids and also an important 
tool in designing and in industrial processes of viscoelastic 
applications. In numerical simulations, the viscoelastic flow 
is solved using Navier-Stokes equations integrated with ad-
ditional constitutive equations which describe the relation of 
stress with the strain rate tensor [18]. A variation of numerical 
methods, including finite difference, finite element, finite vol-
ume, and hybrid methods, have been developed to simulate 
viscoelastic flows [19]. In spite of considerable progress in 
the field of viscoelastic fluid flow, the key questions in the 
field of non-Newtonian Viscoelastic Fluid-Structure Interac-
tion (VFSI) during the fluid hammer phenomenon have not 
yet been answered.

According to the literature, the previous studies have been 
limited to FSI during Newtonian fluid hammer and in the field 
of VFSI, studies have been focused on situations other than a 
viscoelastic fluid hammer, and none of them considered the 
effects of viscoelastic fluid properties on the interaction of 
fluid and structure. So it appears the realm of VFSI needs to 
be scrutinized, regarding abrupt valve closure as well as the 
subsequent phenomena of rising and falling of the transient. 
The objective of the present study is to investigate the effects 
of viscoelastic fluid properties on fluid-structure interaction 
during the viscoelastic fluid hammer phenomenon. To this 
end, at first, two equations representing the conservation of 
mass and momentum which govern the transitional flow for 
non-Newtonian fluids are derived and the Oldroyd-B consti-
tutive equation is used to model the behavior of the viscoelas-
tic fluid. Then, structural equations are written and coupling 
conditions in junction coupling and Poisson coupling are in-
vestigated. 

The numerical method used for the discretization of the 
equations is a two-step variant of the Lax-Friedrichs (LxF) 
method. It is one of the finite difference methods. The main 

point in this numerical method, which distinguishes it from 
other numerical methods, is using multi-step methods. Multi-
step methods, which use finite difference relations at split 
time levels, work well, especially when they are applied to 
non-linear hyperbolic equations [25]. In this method, firstly, 
a half time step is taken based on the LxF scheme on a stag-
gered mesh. Then, the second half step is implemented based 
on LxF to arrive at the solution on the original mesh. High 
accuracy and convergence, the low computational cost com-
pared to other numerical methods and simple algebraic opera-
tion can be expressed as important features of this numerical 
method.

Computational results are provided in terms of the time his-
tory of the pressure head and the ratio of flow shear stresses 
at critical points of a pipe such as at the valve and mid-length 
of the pipe. In this study fluid-structure interaction during flu-
id hammer with viscoelastic fluid in a simple reservoir-pipe-
valve system is simulated. Considering the boundary condi-
tions in each coupling, the pressure wave behavior for the 
fluid is modeled in three different states (ideally, Newtonian 
and viscoelastic) separately. Investigation and comparison 
of shear stresses due to the flood hammer phenomenon can 
be expressed as another highlight of this study. Here, shear 
stresses at the midpoint of the pipe in FSI and No FSI con-
ditions are calculated in the mention couplings. Also, shear 
stresses due to viscoelastic fluid are shown and interpreted 
separately during different couplings.

The schematic shape of the problem is shown in Fig. 1.
Fig. 1 shows that the pipe system consists of a reservoir 

at the upstream end of the pipeline and a valve at the down-
stream end discharging to the atmosphere.

2- Formulation
In this section, the governing equations for each sub-prob-

lem domain and the coupling conditions on the interface are 
presented. 

2- 1- Fluid equations 
The equations for fluid transients in elastic pipes are 

continuity and axial momentum. It should be noted that for 
modeling the problem in one-dimensional form, neglecting 
the nonlinear convective terms [20], the mentioned equations 
integrate across the pipe cross-section. Besides, because of 

 

Fig. 1. Schematic of the reservoir-pipe-valve system [29]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic of the reservoir-pipe-valve system [29] 
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investigating fluid-structure interaction during fluid hammer, 
it is necessary to replace the proportional term of pipe axial 
velocity with the radial velocity of the flow in the continuity 
equation [21].
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Where H  is the pressure head and t  is time, zu  is axial 
pipe velocity, V  is the average cross-sectional velocity, fc  is 
the wave speed [22]: 
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Here, fρ  is the fluid density, fE  is the bulk modulus of 
compressibility for the fluid, 

pE  is Young’s modulus of elas-
ticity for the pipe material, e  is the pipe thickness and D  
is the pipe diameter, zv  is axial velocity, rzτ  is the shear 
stress in the liquid and R is the pipe radius. The coefficient of 
restriction for axial pipe movement, k  is a function of Pois-
son’s ratio for the pipe material, pυ  as follows [22]:
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2- 1- 1-  Constitutive equations
Constitutive equations are a relation between two physi-

cal quantities that is specific to a material or substance and 
approximates the response of that fluids. The Oldroyd-B 
model is a constitutive model used to describe the flow of vis-
coelastic fluids. This model can be regarded as an extension 
of the Upper Convected Maxwell model [23]. In this model, 
the intended solution is considered as a compound of the Up-
per Convected Maxwell Model (UCM) polymer and Newto-
nian solvent. This model can be written as [24]:
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where τ  is the stress tensor, η  is viscosity, λ  is relax-
ation time, θ  is retardation time, and ∇  is the upper con-
vected derivative which is defined as:
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where A is an arbitrary tensor. In Eq. (6), the term γ  is 
the shear rate and γ

∇


 is an upper convected derivative of the 
shear rate defined as:
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D
Dt
γ

 is a complete derivative of polymer shear stress 
tensor, ∇v  is velocity gradient, and T is transpose operator. 
The Oldroyd-B model is usually considered for a polymeric 
solution in which the polymeric additives with the upper-
convected Maxwell model (UCM) are solved in a Newtonian 
solvent. Therefore, the stress of the Oldroyd-B model can be 
expressed as
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where subscripts s and p denote the Newtonian solvent 
and polymeric additives, respectively.

It can easily be shown that the above statement of the Old-
royd-B model (Eq. (6)) is identical with Eq. (9) by consider-
ing the following relations:
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where β  is viscosity ratio and defined as:
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Regarding Eq. (10), we have:
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To replace shear stress in the momentum equation, at first, 
the velocity distribution profile equation for laminar flow in a 
pipe must be considered:
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Where r  is the radial distance from the pipe center. In 
fact, considering the Poiseuille velocity distribution profile 
equation for laminar flow in a long pipe and replacing the 
appropriate values in Eqs. (13) and (14), the shear stress 

rz r R
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=
 is obtained. So, the governing equations for visco-

elastic fluid hammer are given by:
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Replacing zero for polymer terms in the momentum equa-
tion, classical water-hammer equations are achieved.

2- 2- Structural equations 
The governing equation for the axial motion of the pipe is 

a two-order equation. This equation can be transformed into 
two first-order equations [16]:
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In which:
where zu

•

 is pipe axial velocity, zσ  is the pipe axial 
stress, tρ is the density of pipe wall material, and tc is axial 
stress wave speed.

2.3. Non-dimensionalization of the equations
Considering the above dimensionless groups, the non-

dimensional fluid and structure equations can be expressed 
as follows:
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where De  denotes Deborah number which is attributed 
to an important feature of viscoelastic fluid called relaxation 
time constant, β  is the viscosity ratio to show the magnitude 
of polymer viscosity with respect to the total viscosity, M  
is Mach number and Re is Reynolds number. In the case of a 
Newtonian fluid, the above equations are rewritten by substi-
tuting 0, 0.Deβ = =

3- Numerical Method
The Lax–Friedrichs (LxF) method is a simple method 

for solving partial differential equations. The basis of this 
method is the Finite Difference Method (FDM). The finite 
difference method works by replacing the region over which 
the independent variables in the Partial Differential Equations 
(PDEs) are defined by a finite grid of points at which the de-
pendent variable is approximated. LxF method is available 
for all forms of PDEs [25]. Generally, multi-step methods 
increase convergence and accuracy in numerical problems. 
In this study, a two-step variant of the LxF method is used. 
In this method, firstly, a half time step is taken based on LxF 
scheme on a staggered mesh. Next, the second half step is im-
plemented based on LxF to reach the solution on the original 
mesh. In Fig. 2, the stencil of conventional LXF and two-step 
LxF are plotted.

Fig. 2 shows that in the two-step LxF method, a one-time 
step is divided into two halves. In part A, to calculate the 
amount of the variable in the next time step 1n

iu + , it is enough 
in the present time step to have the values 

1
n
iu −

,
1

n
iu −

 to cal-
culate the amount of the variable in the next time step 1n

iu +

immediately. Now in part B, if the time and space interval 
on the way to the next time step is divided into two halves, 
the equations become a little more complicated, however, the 
results are more convergent and more accurate. 

The equations are discretized as follows in the first time 
step:
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Note that using the above equation, the value of the func-
tion u  is obtained in spatial nodes 1,2,..., 1i M= −  at a time 

1
2

n + . 

Now the equations are discretized in the second time step 
as follows:
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In this way, the values of the function u  in the nodes of 
space 1,2,..., 1i M= −  on the main mesh at a time 1n +  are 
obtained. Note that in this state, at the first step, the values of 

 
 

A. One-step LxF  B. Two-step LxF 

Fig. 2. Stencil of LxF method [16] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Stencil of LxF method [16]
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the function for exampleU in spatial nodes i = 1, 2,...,v -1
and the time 0.5n + on a grid mesh is obtained where v
is the node in the place of the valve, and in the second half 
step, the values of the mention function in spatial nodes 
i = 2, 3,...,v -1 and the time 1n + on the original mesh is 
achieved. We know the stability condition is 1c t

x
∆

≤
∆

 and c is 
pressure wave speed. In this one-dimensional simulation, the 
stability condition and the Non-dimensional spatial step size 
for the grid ( )x

l
∆  are considered 0.99 and 0.001 respectively. 

4- Validation of the Present Numerical Model 
Because of the lack of texts on experimental works about 
the fluid hammer with viscoelastic fluid in the pipes, it was 
decided that in the first step, the result of the present study is 
validated by laboratory data for a Newtonian fluid in the pipe. 
It is important to mention that verifying the Computational 
Fluid Dynamics (CFD) simulation of non-Newtonian flows 
with special Newtonian cases is usual in rheology and non-
Newtonian fluid mechanics which is mostly related to the 

dearth of experimental data. In other words, the CFD code 
is verified as a special Newtonian case by considering zero 
relaxation time. Holmboe and Rouleau’s experiment [26] 
is chosen as a valid laboratory sample in the field of fluid 
hammer phenomenon in the pipe. The properties and pipe 
configuration data are presented in Table 1. In this experiment, 
the fluid transient is generated by the sudden closure of the 
downstream valve.

Among the numerical studies that have modeled fluid 
hammer phenomenon in the pipe using different numerical 
methods, in the present paper, Wahba’s study in the one-
dimensional state [20] for validation of the proposed model 
is selected. Wahba [20] studied laminar transitional flows in 
the pipeline in one and two-dimensional states. In his study, 
Runge–Kutta schemes were used to simulate unsteady flow in 
elastic pipes due to sudden valve closure, and the spatial de-
rivatives were discretized using a central difference scheme. 
In this numerical modeling, also, Holmboe and Rouleau’s ex-
periment [26] data have been used. 

In the present study, the modeling has been done one-di-
mensional, so it is expected that after ignoring the non-New-
tonian terms related to the viscoelastic fluid in the equations, 
the results of the proposed model for Newtonian fluid using 
the LxF method are well suited to the results of the mentioned 
studies. The initial conditions in Holmboe and Rouleau ex-
periment [26] are taken according to the steady-state situation 
of the system. The boundary conditions describe the situation 
at the pipe ends, where for instance a reservoir or valve is lo-
cated. The boundary conditions that describe a constant head 
reservoir with a pipe rigidly connected to it is 0H H=  where 
subscript 0  shows the value of variables in the steady state 
situation of the system, and a zero velocity boundary condi-
tion is imposed at the downstream end to simulate the abrupt 
closure of the valve. Fig. 3 shows a comparison between the 
results obtained using Wahba (1-D) [20] with the proposed 
model using the LxF method and experimental results.

Table 1. Properties and pipe configuration data [26] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Properties and pipe configuration data [26] Table 1.  
Values properties 
36.09 Pipe length (m) 

0.128 Mean velocity (m/s) 

1324 Pressure wave speed (m/s) 
0.0253 Pipe diameter (m) 
0.78 Darcy-Weisbach friction 

factor 
878 Specific density of fluid 

(kg/m3) 
0.03483 Dynamic Viscosity (Pa.s) 

  
B. At midpoint A. At valve point  

Fig. 3. Pressure- time history   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Pressure- time history  
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According to Fig. 3,  there is a good agreement between 
the results of the proposed model using the present method 
and previous numerical works. It is noted that the 1D simu-
lation state of the Wahba [20] method for validation of the 
present method is considered.  The experimental results do 
not match the numerical results in some points. The reason 
for that can be attributed to the modeling of the problem one-
dimensionally [20]. The 1-D model provides an excellent 
prediction of the magnitude of the first pressure peak. On the 
contrary, it underestimates the attenuation of the following 
pressure peaks resulting in much higher simulated pressure 
values than those experimentally observed. The reason for 
this is the inadequate representation of the frictional damping 
mechanism in the 1-D model [20].

5- Numerical Simulation
Pipe systems experience severe dynamic forces during 

a viscoelastic fluid hammer event. In order to obtain the re-
sults near to the physical conditions, we used the properties 

of a dilute polymeric solution and a real geometry to obtain 
the typical dimensionless groups. For this purpose, a solu-
tion of polyacrylamide (100ppm (0.01 %wt )) in a 80 / 20  
( /v v ) glycerin/de-ionized water is considered a typical 
viscoelastic fluid. The molecular weight of polyacrylamide 
is 65 10  g / molwM = ×  and the degree of purity of glycerin is 
99%. The viscometric test of this solution indicates that the 
viscosity has a constant value of 0.08918 Pa.s in a wide range 
of shear rate [27] so it could be considered as a Boger liquid 
and the Oldroyd-B constitutive equation is suitable to de-
scribe the mechanical behavior of this solution. The results 
of curve fitting of four modes generalized Maxwell model on 
the data of sweep frequency test at constant 10% of strain are 
presented in Table 2 [27]. Here, mode zero indicates the New-
tonian contribution of the model. Based on the data of this 
table, the fluid has an average relaxation time of 1.9s [27]. 
In Fig. 4 the comparison between ideal solution (frictionless 
solution) and Newtonian and viscoelastic solution with 
similar viscosity is shown. The other properties and pipe 

Table 2. The spectrum of relaxation time and viscosity [27]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2. The spectrum of relaxation time and viscosity [27] 

 

Mode No. Dynamic Viscosity 
(Pa.s) 

Relaxation time constant 
(s) 

0 0.0319 0 

1 0.0625 7.088E-4 

2 0.0131 0.2469 

3 0.0025 10.2117 

4 0.0151 9.9311 
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Table 3. Properties and pipe configuration data  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Properties and pipe configuration data  
 
 

Table 3.  
Values Fluid & pipe configuration data 
36.09 Pipe length (m) 

0.128 Mean velocity (m/s) 

1324 Pressure wave speed (m/s) 
0.08918 Viscosity (Pa.s) 
0.0253 Pipe’s diameter (m) 
2020 Solution’s density (kg/m3) 

5280.5 Stress wave speed (m/s) 
7900 Pipe’s density (kg/m3) 
210 Young’s modulus (GPa) 
0.3 Poisson’s ratio 
80 Reynolds number 
0.6 Viscosity ratio 

9.66e-5 Mach number 
10 Deborah number 
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configuration data are presented in Table 3. The Reynolds 
number for this laminar flow case is 80, the viscosity ratio 
is considered 0.6, and Deborah number in the mentioned 
viscoelastic solution according to the data of Tables 1 and2  
is equal to 9.6 10≈  and the fluid transient is generated by the 
sudden closure of the downstream valve. 

The first point in Fig. 4 is related to the pipeline packing 
or line packing phenomenon [28]. Shortly, in this phenom-
enon, the value of transient pressure continues to rise above 
the Joukowsky pressure value due to frictional effects at the 
valve. The second point is to compare the attenuation time of 
the pressure wave in these three types of fluid. As it is known, 
in the ideal fluid, damping does not occur for the transition 
flow because the viscosity of the fluid is considered zero. Fig. 
4 also shows that the height of the transitional flow in the 
viscoelastic solution compared to the Newtonian solution is 
higher which leads to a longer attenuation time. This issue 
must be referred to the viscoelastic properties of the fluid. In 
a Newtonian fluid, after the imposition of the potential energy 
caused by the sudden closure of the valve, the viscous char-
acteristic of the liquid damps the pressure wave gradually. In 
a viscoelastic fluid, solid and liquid properties, show different 
reactions to this sudden potential energy at the same time. In 
fact, a viscoelastic solution has viscous and elastic properties 
simultaneously. The elastic property plays an important role 
in storing the potential energy imposed on the fluid, while the 
viscous part is extremely eager to waste the imposed energy. 
Finally, these different actions in a viscoelastic fluid cause the 
damping time of the transition flow to become longer com-
pared to Newtonian fluid [29, 30]. 

6- Numerical Results of Fluid-Structure Interaction
The interaction is always caused by dynamic forces which 

act simultaneously on fluid and pipe.

Two important coupling mechanisms during the fluid 
hammer phenomenon, which are commonly considered as 
the most common kind of fluid and structure coupling, are 
junction coupling and Poisson coupling. Poisson coupling is 
distributed along the axis of a pipe element and acts along 
with the entire piping system while the junction coupling 
forces act locally at geometric irregularities such as elbows, 
tees, orifices, or valves. As follows, the effects of each of the 
couplings on pressure time history during fluid hammer in 
different conditions of fluid such as Frictionless (Ideal), New-
tonian and Viscoelastic are investigated and compared with 
no couplings.

6- 1- unction coupling
Junction coupling is created from the reactions set up by 

unbalanced pressure forces and by changes in liquid momen-
tum only at specific places such as elbows, tees, orifices, or 
valves. It is considered through the boundary conditions or 
more accurately through the closure relations derived for ar-
bitrarily shaped piping systems.

6- 1- 1- . Boundary condition
The initial conditions are taken according to the steady-

state situation of the system. The boundary conditions that 
describe a constant head reservoir with a pipe rigidly con-
nected to it, are [30]:
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A. At valve point B. At midpoint 
 
 

Fig. 4. The comparison of pressure time history during fluid hammer with different solutions (No FSI) 
Newtonian Fluid Re 80, 0, 9.66 5, 0M e De= = = − =  

Viscoelastic Fluid Re 80, 0.6, 9.66 5, 10M e De= = = − =  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The comparison of pressure time history during fluid hammer with different solutions (No FSI)

Newtonian Fluid Re 80, 0, 9.66 5, 0M e Deβ= = = − =
Viscoelastic Fluid Re 80, 0.6, 9.66 5, 10M e Deβ= = = − =
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Subscript 0 shows the value of variables in the steady-
state situation of the system. In Junction coupling, the Pois-
son’s ratio is zero. Boundary conditions at the valve point are 
as follows:
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Where fA  and tA  are cross-sectional discharge area and 
cross-sectional pipe wall area respectively. Subscript v  re-
fers to the value of variables in the valve. In fact, in junction 
coupling, the valve is allowed to move and it follows the pipe 
vibration. In Fig. 5 the comparison between pressure time his-
tory in the condition of FSI junction coupling in different 
states such as ideal, Newtonian, and viscoelastic for fluid dur-
ing fluid hammer is shown.

In Fig. 5, two mention points in Fig. 4 related to line pack-
ing at the valve at t*=0 to t*=2 and attenuation time of the 
pressure wave in the Newtonian and viscoelastic fluid can be 
observed. In order to investigate the effects of each coupling 
on pressure time history in Figs. 6 to 8, the comparisons be-
tween FSI and No FSI conditions for each fluid are shown 
separately.

Figs. 6 to 8 show that the pressure rise created by closing 
the valve abruptly, pushes the valve in the downstream direc-
tion, so extra storage is created for the liquid which results 
in a lower initial pressure rise. In fact, the movement of the 

valve causes the fluid to not completely stop and moves at 
the velocity of the valve. The axial stress wave created by the 
movement of the valve along the pipe pulls the valve back 
and this pumping action continues [31]. 

6- 2- Poisson coupling
Poisson coupling is related to the pressures in the fluid to 

the axial stresses in the pipe via the contraction or expansion 
of the pipe wall. The pressure waves in the fluid are coupled 
with axial and radial stress waves in the structure through 
changes of the pipe cross-section (hoop stress). Poisson cou-
pling is figuratively known as pipe breathing. An interesting 
and important side effects of the Poisson coupling are precur-
sor waves. The origin of the precursor waves are axial and 
hoop stress waves in the pipe wall, while changes of pipe 
cross-section or length, through Poisson coupling, yield to 
changes in pressure in the fluid. Precursor waves travel faster 
than pressure waves in the fluid and are thus forerunners of 
the fluid hammer.

6- 2- 1- Boundary condition
The boundary conditions that describe a constant head 

reservoir with a pipe rigidly connected to it can be stated as 
follows:
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A. At valve point B. At midpoint 
 

Fig. 5. The comparison of pressure time history in the condition of FSI junction coupling 
Newtonian Fluid Re 80, 0, 9.66 5, 0M e De= = = − =  

Viscoelastic Fluid Re 80, 0.6, 9.66 5, 10M e De= = = − =  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The comparison of pressure time history in the condition of FSI junction coupling

Newtonian Fluid Re 80, 0, 9.66 5, 0M e Deβ= = = − =
Viscoelastic Fluid Re 80, 0.6, 9.66 5, 10M e Deβ= = = − =
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A. At valve B. At midpoint 

 
Fig. 6. Pressure time history during fluid hammer with ideal fluid  Fig. 6. Pressure time history during fluid hammer with ideal fluid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
A. At valve B. At midpoint 

 
Fig. 7. Pressure time history during fluid hammer with Newtonian fluid  

Re 80, 0, 0, 9.66 5De M e= = = = −  
  
  

 

Fig. 7. Pressure time history during fluid hammer with Newtonian fluid 

Re 80, 0, 0, 9.66 5De M eβ= = = = −

For the boundary conditions at the valve, a zero velocity 
boundary condition is imposed at the downstream end to 
simulate the abrupt closure of the valve.
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According to the boundary conditions, in the Poisson cou-
pling, unlike junction coupling, it is assumed that the valve is 
fixed. In Fig. 9 the comparison between pressure time history 
in the condition of FSI Poisson coupling in the mentioned 
fluids is shown.

In Fig. 9, line packing can be observed at the valve at t*=1 
to t*=2. Moreover, in this coupling like junction coupling, 
the ideal fluid has the largest and the Newtonian fluid has the 
lowest pressure wave head. In Figs. 10 to 12, the comparisons 
between FSI and No FSI conditions for each fluid are shown 
separately.
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A. At valve B. At midpoint 

 
Fig. 8. Pressure time history during fluid hammer with a viscoelastic fluid  

Re 80, 0.6, 9.5, 9.66 5De M e= = = = −  
Fig. 8. Pressure time history during fluid hammer with a viscoelastic fluid 

Re 80, 0.6, 9.5, 9.66 5De M eβ= = = = −

  

A. At valve point B. At midpoint 
 

Fig. 9. The comparison of pressure time history in the condition of FSI Poisson coupling 
Newtonian Fluid Re 80, 0, 9.66 5, 0M e De= = = − =  

Viscoelastic Fluid Re 80, 0.6, 9.66 5, 10M e De= = = − =  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The comparison of pressure time history in the condition of FSI Poisson coupling

Newtonian Fluid Re 80, 0, 9.66 5, 0M e Deβ= = = − =
Viscoelastic Fluid Re 80, 0.6, 9.66 5, 10M e Deβ= = = − =

  
A. At valve B. At midpoint 

 
Fig. 10. Pressure time history during fluid hammer with ideal fluid  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Pressure time history during fluid hammer with ideal fluid 
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Figs. 10 to 12 show that the Poisson coupling has a weak 
effect on the pressure head at the initial periods of the fluid 
hammer. The Poisson coupling performance mechanism can 
be defined as follows: The sudden closure of the valve in-
creases the pressure of the moving fluid causing the radial 
expansion of the pipe wall. Simultaneously, with radial ex-
pansion in the pipe, an axial contraction occurs in the pipe. 
The axial contraction of the pipe causes a stress wave to be 
sent which results in a change in pressure in the fluid. As can 
be seen in Figs. 11 to 13, these effects are very small at first 
and gradually increase along the pipe.

6- 3- Poisson and junction coupling
In this kind of coupling, Poisson equations with junction 

boundary conditions are imposed on the system and the effect 
of the sudden closure of the valve on pressure time history 
during fluid hammer at valve and midpoint is investigated. 
This result is shown in Fig. 14.

Fig. 13 shows that the fluid’s behavior in this coupling is a 
combination of the previous ones. In Figs. 14 to 16, the com-
parisons between FSI and No FSI conditions for each fluid 
are shown separately.

  
A. At valve B. At midpoint 

 
Fig. 11. Pressure time history during fluid hammer with Newtonian fluid  

Re 80, 0, 0, 9.66 5De M e= = = = −  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Pressure time history during fluid hammer with Newtonian fluid 

 Re 80, 0, 0, 9.66 5De M eβ= = = = −

  
A. At valve B. At midpoint 

 
 

Fig. 12. Pressure time history during fluid hammer with viscoelastic fluid 
Re 80, 0.6, 10, 9.66 5De M e= = = = −  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Pressure time history during fluid hammer with viscoelastic fluid

 Re 80, 0.6, 10, 9.66 5De M eβ= = = = −
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A. At valve point B. At midpoint 
 
 

Fig. 13. The comparison of pressure time history in the condition of FSI junction and Poisson coupling 
Newtonian Fluid 80, 0, 9.66 5, 0Re M e De= = = − =  

Viscoelastic Fluid 80, 0.6, 9.66 5, 10Re M e De= = = − =  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. The comparison of pressure time history in the condition of FSI junction and Poisson coupling

Newtonian Fluid 80, 0, 9.66 5, 0Re M e Deβ= = = − =
Viscoelastic Fluid 80, 0.6, 9.66 5, 10Re M e Deβ= = = − =

 

 

 

 
A. At valve B. At midpoint 

 
Fig. 14. Pressure time history during fluid hammer with ideal fluid in FSI junction& Poisson coupling  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Pressure time history during fluid hammer with ideal fluid in FSI junction& Poisson coupling 

Figs. 14 to 16 show the Poisson and junction coupling 
combined effects. In this state, due to the combination of two 
couplings, the behavioral complexity of the pressure wave 
is slightly higher but with precision in details, the precursor 
wave which travels ahead of the main wave of the fluid ham-
mer can be recognized similarly to the junction coupling state 
and Poisson coupling state.

6- 4- Comparison of shear stresses due to fluid hammer 
phenomenon

In Fig. 17 a comparison between shear stresses due to 
fluid hammer phenomenon at the midpoint of the pipe with 
considering FSI Poisson and junction coupling is shown.

Fig. 17 in No FSI state shows that the shear stresses 
caused by fluid hammer with viscoelastic fluid is significant-
ly reduced compared to the Newtonian state. Considering 
that the viscosity of the solutions are the same in both states, 
the reduction of shear stresses is related to viscoelastic fluid 
properties certainly. Storing of the potential energy in the 
viscoelastic solution due to the elastic properties of the solid 
character in it, can be considered the main factor in reducing 
the shear stresses in a viscoelastic solution compared to the 
Newtonian solution. It is clear that in an ideal fluid, the value 
of shear stress is zero. It seems that the effect of this property 
of viscoelastic fluid makes it possible to significantly reduce 
the severity of the initial shear stresses. Moreover, we know 
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that the coupling effect increases the amount of shear stress to 
almost double. In Fig. 18 a comparison between shear stress-
es due to viscoelastic fluid hammer at the midpoint of the pipe 
is shown. 

It’s obvious that the VFSI, in contrast to the No VFSI 
model, causes intense pressures, high-frequency oscillations, 
and phase changes. Moreover, Fig. 18 shows that the value of 
imposed shear stresses due to Poisson coupling can be stated 
as the lowest shear stress among the other couplings. As can 
be seen that the junction coupling and the Poisson and junc-
tion coupling cause the highest shear stress along the pipe 
respectively.

7- Conclusions
The relationship between fluid-structure equations and 

constitutive equations for viscoelastic fluids during the fluid 
hammer phenomenon was investigated. Equations governing 
the problem include continuity and axial momentum for the 
fluid, and axial velocity and axial stress for the pipe. To mod-
el the viscoelastic fluid behavior, Oldroyd-B model relations 
were used. The LxF numerical method was also used to dis-
cretize the aforementioned equations. The system examined 
was a valve, pipe, and reservoir. The equations of junction 
and Poisson couplings and simultaneous coupling were de-
fined with boundary conditions for each one. With a polymer 

  
A. At valve B. At midpoint 

 
Fig. 15. Pressure time history during fluid hammer with Newtonian fluid in FSI junction& Poisson 

coupling Re 80, 0, 0, 9.66 5De M e= = = = −  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. Pressure time history during fluid hammer with Newtonian fluid in FSI junction& Poisson coupling  

Re 80, 0, 0, 9.66 5De M eβ= = = = −

  
A. At valve B. At midpoint 

 
Fig. 16. Pressure time history during fluid hammer with viscoelastic fluid in FSI junction& Poisson 

coupling 
Re 80, 0.6, 10, 9.66 5De M e= = = = −  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Pressure time history during fluid hammer with viscoelastic fluid in FSI junction& Poisson coupling 

Re 80, 0.6, 10, 9.66 5De M eβ= = = = −
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FSI Poisson coupling FSI junction & Poisson coupling 

 

Fig. 17. The comparison of shear stresses at the pipe midpoint 

Newtonian Fluid Re 80, 0, 9.66 5, 0M e De= = = − =  
Viscoelastic Fluid Re 80, 0.6, 9.66 5, 10M e De= = = − =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. The comparison of shear stresses at the pipe midpoint

Newtonian Fluid Re 80, 0, 9.66 5, 0M e Deβ= = = − =
Viscoelastic Fluid Re 80, 0.6, 9.66 5, 10M e Deβ= = = − =

 
 

Fig. 18. The comparison of shear stresses during viscoelastic fluid hammer at the midpoint 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. The comparison of shear stresses during viscoelastic fluid hammer at the midpoint
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of specific physical properties flowing in the pipe, the behav-
ior of the polymer pressure head due to a sudden clogging 
of the valve was investigated in the case of couplings at the 
valve and midpoint of the pipe. Considering the effects of 
each coupling, shear stresses due to the fluid hammer phe-
nomenon were calculated for the aforementioned viscoelastic 
fluid and the results were compared to a Newtonian fluid with 
similar viscosity. The results showed that viscoelastic fluid 
properties result in a significant reduction of the shear stress 
caused by this phenomenon. Moreover, the investigation of 
the pressure wave in couplings showed that junction coupling 
and compound coupling have a greater effect in increasing 
the pressure wave head and impose more shear stresses than 
the Poisson coupling along the pipe.

Appendix
Non-dimensionalization fluid and structure equations:
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NomenclatureNomenclature 

c  wave speed (m/s) H  pressure head (m) 

D  pipe diameter (m) k  The coefficient of restriction for axial pipe 
movement 

De  Deborah number M  Mach number 
E Bulk modulus of compressibility (Pa) p  Pressure (Pa) 

f Darcy-Weisbach friction factor R  Pipe Radius (m) 
e  Pipe thickness (m)  Reynolds number 
g  gravity acceleration (m/s2) 0v  Velocity in steady-state (m/s) 

Greek symbols V  Average cross-sectional velocity (m/s) 
  viscosity (Pa.s)   Superscripts 
τ  Stress Tensor (Pa) n Previous time steps  



τ  
Upper convected derivative of the stress tensor 
(Pa) 

n
+
1 

next time steps 

  Density (kg/m3) Subscripts 

 
Average stress components in the liquid in the 
corresponding surface and directions (Pa) f fluid 

 
Average stress components in the liquid in the 
corresponding surface and directions (Pa) p pipe material 

  The thickness of the boundary layer (m) r Radial direction 

  Average stress (Pa) z Axial direction 
  Relaxation time (s)   
  Poisson’s ratio   
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