[1] L. Yao, G. Sun, W. He, X. Meng, D. Xie, Investigation on impact behavior of FMLs under multiple impacts with the same total energy: Experimental characterization and numerical simulation, composite structures, 226 (2019) 111218.
[2] A. Vlot, J.W. Gunnink, Fibre Metal Laminates – An Introduction, Kluywer Academic Publisher, 2001.
[3] L.B. Vogelesang, Development of a new hybrid material (ARALL) for aircraft structures, Industrial & Engineering Chemistry Product Research and Development, 22(3) (1983) 492-496.
[4] G. Wu, J.-M. Yang, H.T. Hahn, The impact properties and damage tolerance and of bi-directionally reinforced fiber metal laminates, Journal of materials science, 42(3) (2007) 948-957.
[5] A. Arjangpay, A. Darvizeh, M.Y. Tooski, R. Ansari, An experimental and numerical investigation on low velocity impact response of a composite structure inspired by dragonfly wing configuration, Composite Structures, 184 (2018) 327-336.
[6] G. Caprino, G. Spataro, S. Del Luongo, Low-velocity impact behaviour of fibreglass–aluminium laminates, Composites Part A: Applied Science and Manufacturing, 35(5) (2004) 605-616.
[7] A.P. Sharma, S.H. Khan, R. Kitey, V. Parameswaran, Effect of through thickness metal layer distribution on the low velocity impact response of fiber metal laminates, Polymer Testing, 65 (2018) 301-312.
[8] A. Vlot, M. Krull, Impact damage resistance of various fibre metal laminates, Le Journal de Physique IV, 7(C3) (1997) C3-1045-C1043-1050.
[9] F.D. Morinière, R.C. Alderliesten, M.Y. Tooski, R. Benedictus, Damage evolution in GLARE fibre-metal laminate under repeated low-velocity impact tests, Central European Journal of Engineering, 2(4) (2012) 603-611.
[10] B. Liaw, Y. Liu, E. Villars, Impact damage mechanisms in fiber-metal laminates, in: Proceedings of the SEM annual conference on experimental and applied mechanics, 2001, pp. 536-539.
[11] V. Fiore, T. Scalici, G. Di Bella, A. Valenza, A review on basalt fibre and its composites, Composites Part B: Engineering, 74 (2015) 74-94.
[12] V. Dhand, G. Mittal, K.Y. Rhee, S.-J. Park, D. Hui, A short review on basalt fiber reinforced polymer composites, Composites Part B: Engineering, 73 (2015) 166-180.
[13] F. Sarasini, J. Tirillò, M. Valente, T. Valente, S. Cioffi, S. Iannace, L. Sorrentino, Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites, Composites Part A: Applied Science and Manufacturing, 47 (2013) 109-123.
[14] L. Ferrante, F. Sarasini, J. Tirillò, L. Lampani, T. Valente, P. Gaudenzi, Low velocity impact response of basalt-aluminium fibre metal laminates, Materials & Design, 98 (2016) 98-107.
[15] A. Pandian, M.T. Sultan, U. Marimuthu, A.U. Shah, Low Velocity Impact Studies on Fibre-Reinforced Polymer Composites and Their Hybrids–Review, (2019).
[16] Y. Xu, S. Van Hoa, Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites, Composites Science and Technology, 68(3-4) (2008) 854-861.
[17] B. Sharma, S. Mahajan, R. Chhibber, R. Mehta, Glass fiber reinforced polymer-clay nanocomposites: processing, structure and hygrothermal effects on mechanical properties, Procedia Chemistry, 4 (2012) 39-46.
[18] P. Binu, K. George, M. Vinodkumar, Effect of nanoclay, Cloisite15A on the mechanical properties and thermal behavior of glass fiber reinforced polyester, Procedia Technology, 25 (2016) 846-853.
[19] A.Z. Zakaria, K. Shelesh-nezhad, Introduction of nanoclay-modified fiber metal laminates, Engineering Fracture Mechanics, 186 (2017) 436-448.
[20] M.V. Hosur, F. Chowdhury, S. Jeelani, Low-velocity impact response and ultrasonic NDE of woven carbon/epoxy—Nanoclay nanocomposites, Journal of composite materials, 41(18) (2007) 2195-2212.
[21] M.H. Pol, G. Liaghat, Investigation of the high velocity impact behavior of nanocomposites, Polymer Composites, 37(4) (2016) 1173-1179.
[22] M.I. Zanganeh Inaloo, M. Yarmohammad Tooski, Experimental investigation of FML reinforced nanoclay under high velocity impact of steel spherical projectile, Journal of Science and Technology of Composites, 7(1) (2020) 753-760.
[23] F. Bahari-Sambran, R. Eslami-Farsani, S. Arbab Chirani, The flexural and impact behavior of the laminated aluminum-epoxy/basalt fibers composites containing nanoclay: An experimental investigation, Journal of Sandwich Structures & Materials, (2018) 1099636218792693.
[24] F. Bahari-Sambrana, J. Meuchelboeck, E. Kazemi-Khasragh, R. Eslami-Farsani, S. Arbab Chirani, The effect of surface modified nanoclay on the interfacial and mechanical properties of basalt fiber metal laminates, Thin-Walled Structures, 144 (2019) 106343.
[25] S.R.K. PS, S.R. Madara, Vibration–Impact study on AlMg4. 5Mn reinforced nanoclay composites, Materials Today: Proceedings, (2020).
[26] H. Ahmadi, G. Liaghat, S.C. Charandabi, High velocity impact on composite sandwich panels with nano-reinforced syntactic foam core, Thin-Walled Structures, 148 (2020) 106599.
[27] S. Clifton, B. Thimmappa, R. Selvam, B. Shivamurthy, Polymer nanocomposites for high-velocity impact applications-A review, Composites Communications, 17 (2020) 72-86.