[2] A.S. Perelson, R.M. Ribeiro, Modeling the within-host dynamics of HIV infection, BMC biology, 11(1) (2013) 96.
[3] I.K. Craig, X. Xia, J.W. Venter, Introducing HIV/AIDS education into the electrical engineering curriculum at the University of Pretoria, IEEE Transactions on Education, 47(1) (2004) 65-73.
[4] M. Bofill, G. Janossy, C. Lee, D. MacDonald‐Burns, A. Phillips, C. Sabin, A. Timms, M. Johnson, P. Kernoff, Laboratory control values for CD4 and CD8 T lymphocytes. Implications for HIV‐1 diagnosis, Clinical & Experimental Immunology, 88(2) (1992) 243-252.
[5] H. Mohri, S. Bonhoeffer, S. Monard, A.S. Perelson, D.D. Ho, Rapid turnover of T lymphocytes in SIV-infected rhesus macaques, Science, 279(5354) (1998) 1223-1227.
[6] X. Wei, S.K. Ghosh, M.E. Taylor, V.A. Johnson, E.A. Emini, P. Deutsch, J.D. Lifson, S. Bonhoeffer, M.A. Nowak, B.H. Hahn, Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373(6510) (1995) 117.
[7] A.S. Perelson, P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM review, 41(1) (1999) 3-44.
[8] I. Craig, X. Xia, Can HIV/AIDS be controlled? Applying control engineering concepts outside traditional fields, IEEE Control Systems Magazine, 25(1) (2005) 80-83.
[9] H. Wu, Y. Huang, E.P. Acosta, J.-G. Park, S. Yu, S.L. Rosenkranz, D.R. Kuritzkes, J.J. Eron, A.S. Perelson, J.G. Gerber, Pharmacodynamics of antiretroviral agents in HIV-1 infected patients: using viral dynamic models that incorporate drug susceptibility and adherence, Journal of pharmacokinetics and pharmacodynamics, 33(4) (2006) 399-419.
[10] M. Barão, J.M. Lemos, Nonlinear control of HIV-1 infection with a singular perturbation model, Biomedical Signal Processing and Control, 2(3) (2007) 248-257.
[11] M.-J. Mhawej, C.H. Moog, F. Biafore, C. Brunet-François, Control of the HIV infection and drug dosage, Biomedical signal processing and control, 5(1) (2010) 45-52.
[12] K.W. Cherono Pela, Adicka Daniel, Modelling the Effects of Immune Response and Time Delay on HIV-1 in Vivo Dynamics in the Presence of Chemotherapy, Mathematical Modelling and Applications (2019) 15-21.
[13] S.N. Vardayani Ratti, Susan K. Eszterhas, Alexandra L. Howell, Dorothy I. Wallace, A mathematical model of HIV dynamics treated with a population of gene-edited haematopoietic progenitor cells exhibiting threshold phenomenon, Mathematical Medicine and Biology, (2019) 1–31.
[14] R. Hogg, V. Lima, J. Sterne, S. Grabar, M. Battegay, M. Bonarek, A. D'Arminio Monforte, A. Esteve, M. Gill, R. Harris, Antiretroviral therapy cohort collaboration: life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies, Lancet, 372 (2008) 293-299.
[15] A. Sáez-Cirión, C. Bacchus, L. Hocqueloux, V. Avettand-Fenoel, I. Girault, C. Lecuroux, V. Potard, P. Versmisse, A. Melard, T. Prazuck, Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study, PLoS pathogens, 9(3) (2013) e1003211.
[16] O. Lambotte, F. Boufassa, Y. Madec, A. Nguyen, C. Goujard, L. Meyer, C. Rouzioux, A. Venet, J.-F. Delfraissy, S.-H.S. Group, HIV controllers: a homogeneous group of HIV-1—infected patients with spontaneous control of viral replication, Clinical Infectious Diseases, 41(7) (2005) 1053-1056.
[17] K.A. O’Connell, J.R. Bailey, J.N. Blankson, Elucidating the elite: mechanisms of control in HIV-1 infection, Trends in pharmacological sciences, 30(12) (2009) 631-637.
[18] J.N. Blankson, Effector mechanisms in HIV-1 infected elite controllers: highly active immune responses?, Antiviral research, 85(1) (2010) 295-302.
[19] B.D. Walker, Elite control of HIV Infection: implications for vaccines and treatment, Topics in HIV medicine: a publication of the International AIDS Society, USA, 15(4) (2007) 134-136.
[20] C. Goujard, I. Girault, C. Rouzioux, C. Lécuroux, C. Deveau, M.-L. Chaix, C. Jacomet, A. Talamali, J.-F. Delfraissy, A. Venet, HIV-1 control after transient antiretroviral treatment initiated in primary infection: role of patient characteristics and effect of therapy, Antiviral therapy, 17(6) (2012) 1001.
[21] D.D. Richman, D.M. Margolis, M. Delaney, W.C. Greene, D. Hazuda, R.J. Pomerantz, The challenge of finding a cure for HIV infection, Science, 323(5919) (2009) 1304-1307.
[22] N. Chomont, M. El-Far, P. Ancuta, L. Trautmann, F.A. Procopio, B. Yassine-Diab, G. Boucher, M.-R. Boulassel, G. Ghattas, J.M. Brenchley, HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation, Nature medicine, 15(8) (2009) 893.
[23] J. Ananworanich, A. Schuetz, C. Vandergeeten, I. Sereti, M. De Souza, R. Rerknimitr, R. Dewar, M. Marovich, F. Van Griensven, R. Sekaly, Impact of multi-targeted antiretroviral treatment on gut T cell depletion and HIV reservoir seeding during acute HIV infection, PloS one, 7(3) (2012) e33948.
[24] J.B. Whitney, A.L. Hill, S. Sanisetty, P. Penaloza-MacMaster, J. Liu, M. Shetty, L. Parenteau, C. Cabral, J. Shields, S. Blackmore, Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys, Nature, 512(7512) (2014) 74.
[25] J. Karrakchou, M. Rachik, S. Gourari, Optimal control and infectiology: application to an HIV/AIDS model, Applied mathematics and computation, 177(2) (2006) 807-818.
[26] V. Costanza, P.S. Rivadeneira, F.L. Biafore, C.E. D’Attellis, A closed-loop approach to antiretroviral therapies for HIV infection, Biomedical Signal Processing and Control, 4(2) (2009) 139-148.
[27] H. Chang, C.H. Moog, A. Astolfi, P.S. Rivadeneira, A control systems analysis of HIV prevention model using impulsive input, Biomedical Signal Processing and Control, 13 (2014) 123-131.
[28] K.R. Fister, S. Lenhart, J.S. McNally, OPTIMIZING CHEMOTHERAPY IN AN HIV MODEL, Electronic Journal of Differential Equations, 23(4) (2002) 199-213.
[29] P. Alan S. , Denise E. , Kirschner , Rob De Boer, Dynamics of HIV infection of CD4+ T cells, Mathematical Biosciences, 114(1) (1993) 81-125.
[30] H.R. Joshi, Optimal control of an HIV immunology model, OPTIMAL CONTROL APPLICATIONS AND METHODS, 23 (2002) 199–213.
[31] H. Zarei, A.V. Kamyad, A.A. Heydari, Fuzzy modeling and control of HIV infection, Computational and mathematical methods in medicine, 2012 (2012).
[32] S.V. Jean Yves Semegni, Nizar Marcus, Kazeem Oare Okosun, Peter Joseph Witbooik,Gbenga Jacob Abiodun∗∗, Sensitivity And Optimal Control Analysis Of HIV/AIDS Model∗, (2019) 606-620.
[33] H.M. Cristiana J. Silva, Optimal control of HIV treatment and immunotherapy combination with state and control delays, (2019).
[34] A. Sáez-Cirión, C. Bacchus, L. Hocqueloux, V. Avettand-Fenoel, I. Girault, C. Lecuroux, V. Potard, P. Versmisse, A. Melard, T. Prazuck, Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study, PLoS Pathog, 9(3) (2013) e1003211.
[35] A.S. Perelson, A.U. Neumann, M. Markowitz, J.M. Leonard, D.D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271(5255) (1996) 1582-1586.
[36] A.S. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, M. Markowitz, D.D. Ho, Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387(6629) (1997) 188.
[37] B. Adams, H. Banks, M. Davidian, E. Rosenberg, Estimation and prediction with HIV-treatment interruption data, Bulletin of mathematical biology, 69(2) (2007) 563-584.
[38] S. Bonhoeffer, M. Rembiszewski, G.M. Ortiz, D.F. Nixon, Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection, Aids, 14(15) (2000) 2313-2322.
[39] B.M. Adams, H.T. Banks, M. Davidian, E.S. Rosenberg, Estimation and prediction with HIV-treatment interruption data, Bulletin of mathematical biology, 69(2) (2007) 563-584.
[40] A. Khaitan, D. Unutmaz, Revisiting immune exhaustion during HIV infection, Current HIV/AIDS Reports, 8(1) (2011) 4-11.
[41] M.A. Stafford, L. Corey, Y. Cao, E.S. Daar, D.D. Ho, A.S. Perelson, Modeling plasma virus concentration during primary HIV infection, Journal of theoretical biology, 203(3) (2000) 285-301.
[42] M. Markowitz, M. Louie, A. Hurley, E. Sun, M. Di Mascio, A.S. Perelson, D.D. Ho, A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo, Journal of virology, 77(8) (2003) 5037-5038.
[43] A.T. Haase, K. Henry, M. Zupancic, G. Sedgewick, R.A. Faust, H. Melroe, W. Cavert, K. Gebhard, K. Staskus, Z.-Q. Zhang, Quantitative image analysis of HIV-1 infection in lymphoid tissue, Science, 274(5289) (1996) 985-989.
[44] B. Ramratnam, S. Bonhoeffer, J. Binley, A. Hurley, L. Zhang, J.E. Mittler, M. Markowitz, J.P. Moore, A.S. Perelson, D.D. Ho, Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis, The Lancet, 354(9192) (1999) 1782-1785.
[45] J.M. Conway, A.S. Perelson, Post-treatment control of HIV infection, Proceedings of the National Academy of Sciences, 112(17) (2015) 5467-5472.
[46] L. Rong, A.S. Perelson, Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Mathematical biosciences, 217(1) (2009) 77-87.
[47] J.M. Conway, D. Coombs, A stochastic model of latently infected cell reactivation and viral blip generation in treated HIV patients, PLoS Comput Biol, 7(4) (2011) e1002033.
[48] M.P. Davenport, R.M. Ribeiro, A.S. Perelson, Kinetics of virus-specific CD8+ T cells and the control of human immunodeficiency virus infection, Journal of Virology, 78(18) (2004) 10096-10103.
[49] P.L. Johnson, B.F. Kochin, M.S. McAfee, I.M. Stromnes, R.R. Regoes, R. Ahmed, J.N. Blattman, R. Antia, Vaccination alters the balance between protective immunity, exhaustion, escape, and death in chronic infections, Journal of virology, 85(11) (2011) 5565-5570.
[50] A. Ghaffari, M. Nazari, F. Arab, Suboptimal mixed vaccine and chemotherapy in finite duration cancer treatment: state-dependent Riccati equation control, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37(1) (2015) 45-56.
[51] L.G. De Pillis, W. Gu, A.E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, Journal of Theoretical Biology, 238 (2006) 841–862.
[52] A. Ghaffari, M. Khazaee, Cancer dynamics for identical twin brothers, Theoretical Biology and Medical Modeling, 9(4) (2012) 1-13.