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ABSTRACT: Proposing a finite duration HIV treatment strategy is the main goal of the presented 
paper. Long-term treatments cause many problems, such as drug resistance. Latently infected cells 
have an important role in HIV dynamics. The used HIV model not only consists of target cells and 
infected cells and viruses but also includes latently infected cells. It is shown that the initial population 
of latently infected cells affects the final population of viruses. The dynamics of the model are examined 
by extracting equilibrium points and their stability. Two types of equilibrium points are derived, virus-
free and viral equilibrium points. It is proved that the existence of a stable virus-free equilibrium point 
is essential for finite duration treatment. Also, the effect of immune system ability in HIV treatment is 
explored by considering the effect of changing the parameters of the system in its dynamics. It is shown 
that in some immune system abilities, HIV is cured without any external treatment. The number of 
equilibrium points of the system changes with changes in the immune system ability. Based on this fact, 
a novel mixed antiretroviral therapy and immunotherapy are presented. Antiretroviral therapy affects the 
states of the system, and immunotherapy affects the parameters of the system. The simulation results 
show the effectiveness of the novel presented treatment strategy.
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1- Introduction
As indicated by the Global Health Observatory data 

reported by the World Health Organization (WHO), about 0.9 
million individuals have died of Acquired immune deficiency 
syndrome AIDS-related illnesses [1]. All-inclusive, 36.9 
million individuals were living with it towards the end of 
2017, that 69.93% were living in Africa and about 9.52% in 
South-East Asia. AntiRetroviral Therapy (ART) coverages 
about 59% of people living with HIV. Antiretroviral therapy 
does not treat HIV. ART attempts to disturb the pathogenesis 
of the virus, which leads to the normal life of infected 
individuals.  ART tries to keep the level of CD4+T cells 
count (> 200 Cells/mm) in the peripheral blood and reduce 
the amount of HIV load [2]. The highly active ART is the 
most predominant treatment methodology, which includes 
the utilization of multiple anti-HIV drugs to suspend the 
virus count of infected individuals to the desired level. This 
treatment methodology can maintain the CD4+T cell count at 
a passable level. Therefore, the infected person is recovered 
slowly [3]. CD4+ cells are The T helper cells (T-cells) that 
play an important task in the immune system. By releasing T 
cell cytokines, they help the activity of other immune cells. 
The CD4+ T-cells lifetime estimation in 1/d is 100 days[4, 5].

In recent years, a considerable number of studies have 
focused on providing mathematical models of HIV infection 

to develop a model-based control strategy for HIV treatment 
[2, 3, 6-13]. The mathematical model plays an important 
role in understanding the proliferation of HIV cells as well 
as designing a therapeutic plan to improve the individual. 
The HIV infection process has been modeled to demonstrate 
the interaction between HIV, AIDS pathogens, CD4+T cells, 
and also antiviral drugs. Understanding this process plays an 
important role in creating mathematical models. Modeling 
also plays an important role in developing new ways to 
control the spread of HIV infection [3, 8, 10].

According to VISCONTI research, HIV-1 infection 
usually leads to AIDs by repeating stable viruses and losing 
the production of CD4+T cells [14]. Combined AntireTroviral 
Therapy (cART) reduces mortality and reduces the frequency 
of virus repression [14]. Nevertheless, infected cells cannot 
be eliminated. HIV may conceal itself for years to come. With 
these interpretations, it is unclear how other patients will 
reach the elite control area [15]. Some people can control HIV 
in the absence of treatment on their own. Elite Controllers 
(ECs) were first identified in 2005 [16]. These individuals 
naturally control HIV infection by maintaining undetectable 
viral loads (<50 Copies per ml) [17, 18]. ECs have been 
focusing on the study for a long time, because understanding 
how to control the infection in these individuals may lead to 
progress in the treatment and production of the vaccine [19]. 
Several important features about ECs have been discovered, 
For example, ECs tend to maintain Cytotoxic T Lymphocytes 
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(CTL) responsiveness significantly more strongly than 
cytotoxic, But ECs make up only 1% of the HIV population 
patients while Post-Treatment Control (PTC) patients make 
up about 15% [15, 20]. The existence of a latent reservoir is 
one of the major barriers to the eradication of HIV infection 
[21]. Latently infected cells are not affected by ART and 
cannot be controlled [22], and then the infection is spreading 
rapidly [23, 24].

The non-linear optimal control is employed to determine 
the optimal methodology for administering anti-viral drug 
therapies to HIV infection [25, 26]. A control system analysis 
on HIV infection dynamics is investigated by Chang et al. [27] 
and to increase the immune response, the intake of the drug is 
considered as an impulsive control input. Fister et al. [28] used 
a four-state model to express AIDS behavior, and an optimal 
controller was designed to reduce the cost of chemotherapy 
to treat the disease. This method minimizes systemic costs 
by maximizing T cells, and the described model is adapted 
from the study of Alan et al. [29]. Joshi [30] presented a two 
states model to show the effect of immunotherapy. This is 
to provide a better pharmaceutical solution using optimal 
controls with two controllable inputs. In the study of Zarei 
et al.[31], a fuzzy mathematical model of HIV dynamics 
was raised, in which a fuzzy optimal control problem by 
minimizing both the viral load and drug costs simultaneously 
is studied.  Although in the presence of uncertainties the 
above-mentioned results may not produce desired results. 
Much research has been done in recent years on the optimal 
control of the AIDS model. Including in the study of Semegni 
et al. [32], an optimal control problem regarding the strategy 
of implementing public health education, along with its 
solution, is presented. Cristiana and Solva [33] presented 
solutions using optimal control to combine the treatment of 
human immunodeficiency virus and immunotherapy. The 
immune function has also been studied.

However, finite duration treatment is not considered in 

many studies. In a finite duration treatment, the treatment 
schedule should be implemented in a finite time. In many 
cases, the treatment protocol should be exerted for the whole 
life of the patient. For finite duration treatment, the dynamics 
of HIV should be studied carefully. On the other hand, the 
mathematical models which describe these dynamics should 
be comprehensive. In other words, the mathematical model 
should consider not only the infected cells and viruses but 
also should consider latent cells and target cells. In this paper, 
a mathematical model that considers all significant cells 
is regarded. Then, the dynamics of the model is carefully 
examined by studying the equilibrium points and their stability 
and the effect of change in the parameters of the system on 
the dynamics of the system. Based on this dynamics analysis 
a finite duration treatment is proposed.

The structure of the paper is as follows. In the next section, 
the mathematical HIV model is presented. This model 
includes the latently infected cells. In section 3, the dynamics 
of the system is analyzed. The equilibrium points of the 
system are derived. Then, the stability of these equilibrium 
points is examined using the Lyapunov method. Changing the 
dynamics of the system due to changes in the parameters of 
the system is also examined. Based on the dynamic analysis, 
the mixed treatment strategy is presented. It is shown that just 
ART is not able to cure HIV in a finite duration.

2- Mathematical Model of HIV
In this study, according to the VISCONTI study [34], a 

mathematical model was used to investigate 14 patients living 
with AIDS, which includes a standard model of viral activity 
of HIV infection and treatment [35, 36]. This model includes 
the dynamics of the hidden and dynamics of the reservoir 
of effective CTL cells [37, 38]. The interaction among cells 
considered in this model is shown in Fig. 1. Five types of 
states are considered, i.e. target cells (T), latently infected 
cells (L), productively infected cells (I), effector cells (E), 

 

Fig. 1. The interaction among target cells (T), latently infected cells (L), productively infected cells (I), effector cells (E), and 

viruses (V) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The interaction among target cells (T), latently infected cells (L), productively infected cells (I), effector 
cells (E), and viruses (V)
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and viruses (V). Target cells (CD4+ T cells) may be infected 
by viruses. Some of them can be detected which are named 
as productively infected cells. Some infected cells are hidden 
for many years which are named latently infected cells. 
Effector cells (Cytotoxic T cells) are the immune response to 
the presence of viruses.

The target cells proliferate with the rate ,  λ and naturally 
die with the rate d . They also become infected due to 
interaction with viruses with rate  β . Productively infected 
cells (I) produce viruses at the rate p  and dying at the 
rate  δ , which is due to the effect of viral cytopathic. The 
viruses are cleared at the rate c . Lα  is the fraction of newly 
productively infected cells that become latently infected. The 
latently infected cells are activated to become I  cells at the 
rate a  and die at the rate Ld . ρ  is the rate of proliferation 
of these cells. Based on the study of Adams et al. [39] and 
also the study of Bonhoeffer et al. [38], I  cells are killed by 
effector cells at the rate m , which m  is the constant rate of 
CTL killing. The effector cells are excited to proliferate in the 
presence of viruses 
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Based on the described interactions, the mathematical 

model of HIV is as follows [45]: 
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The parameters of the system and their description are in 
Table 1. The parameters’ values are presented from different 
references. These values are based on clinical tests. 

The open-loop behavior of the system with the initial 
conditions 610 , 50, 0, 1, 0.5T V I L E= = = = =  [45] is shown in 
Fig. 2. As shown in this figure, the target cells and latently 
infected cells decrease monotonically. The rate of variations 
of latently infected cells is very slow. But, the effector cells 
and productively infected cells grow monotonically. The 
viruses decrease at first and then grow to a fixed value. After 
approximately 80 days, the viral cells count increase and is 
fixed at greater than 20.

The behavior of the system with different initial latently 
infected cells is shown in Fig. 3. In this case, L 100= . The 
behavior of the system is oscillatory and finally settles to a 
fixed value. The population of viruses grows drastically at 
first and then settles to a fixed value, which is very higher 
than the previous case.

Although latently cells are declining in these cases, the 

 

Fig. 2. The open-loop behavior of the system with initial conditions target cells ( T )= 61 0 , viruses ( V )=50, productively 

infected cells ( I )=0, latently infected cells ( L )=1, effector cells( E )=0.5. The system moves to a non-zero population of 

viruses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The open-loop behavior of the system with initial conditions target cells (T )= , viruses (V)=50, productively infected 
cells (I)=0, latently infected cells (L)=1, effector cells(E)=0.5. The system moves to a non-zero population of viruses
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Table 1. The parameters of the systemTable 1. The parameters of the system 

Source Units Value Description parameter 

[4] cells/mL per day 104 production of Target cell    

[5] 1 per day 0.01 Death rate of target cell d  

[41] ml per day 1.5e-8 Mass-action infectivity   

[42] 1 per day 1 Death rate of Infected cell   

[43] 1 per day 2000 Rate of viral production p  

[44] 1 per day 23 Rate of viral  clearance c  

[45] - 0.9 Drug efficacy   

[45] 1 per day 0.001 Rate of latent activation a  

[46] 1 per day 0.004 Death rate of latently infected Ld  

[47] 1 per day 0.0045 Proliferation rate of L   

[45] -  610  Fraction of newly I cells that become L L  

[45] cell/ml per day 1 Production rate of E E  

[48] 1 per day 1 Proliferation co-efficient of E  Eb  

[49] 
1 per day 2 

Saturation of immune impairment co-

efficient Ed  

[38] cells/ml 0.1 Production Hill function scaling of E Bk  

[38] 
cells/ml 5 

Saturation of immune impairment Hill 

function scaling Dk  

[45] 1 per day 2 Loss rate of E   

[45] ml /cells per day 0.42 Killing rate of E m  

Estimated - 1 Effectiveness of the immunotherapy drug m  

Estimated - 0.84 Saturation limit of the killing rate of E mk  
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amount of viral cells is about 105 in Fig. 3, which makes 
treatment difficult.

3- Analysis of the Dynamics of the Free System
3- 1- Equilibrium points of the free system

Generally, two types of equilibrium points exist in the 
system, The zero population of viruses called virus-free 
equilibrium point, and the non-zero population of viruses 
called viral equilibrium points.

The equilibrium points of the system are derived by setting 
zero the right hand of Eqs. (1-5) simultaneously and solving 
them. The virus-free equilibrium point is obtained by setting 

*V 0= . The virus-free equilibrium point is as follows:
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To obtain viral equilibrium points, all equations are 
derived versus virus population V . 

By setting Eq. (1) to zero, the following equation is 
derived:
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By setting Eq. (4) to zero, the relationship between V and 

I can be obtained as follows:
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Considering Eq. (7) and setting Eq. (2) to zero, we have:

(1) 
,dT dT VT

dt
     

(2) 
  ,L L

dL VT a d L
dt

       

(3) 
 1 ,L

dI VT I aL mEI
dt

        

 

(4) 
,dV pI cV

dt
   

 

(5) .
  E E E

B D

dE I Ib d E
dt K I k I

 
 

      

 

   * * * * * 6
1 1 1 1 1, , , , 10 ,0,0,0,0.5VFE T V L I E   (6) 

 

(7) 1
λT t

d βV
 


 

 

(8) 
cI V
p

  

 

(9)   
L

L

VL
d V a d

 
 

 
  

 

 

(10) EE
A


   

   (9)

By setting Eq. (5) to zero and using Eq. (8) the following 
equation is derived:
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In the end, by setting Eq. (3) to zero the following equation 

 

 

Fig. 3. The open-loop behavior of the system with initial conditions target cells ( T )= 61 0 , viruses ( V )=50, productively 

infected cells ( I )=0, latently infected cells ( L )=100, effector cells( E )=0.5. The system moves to a non-zero population of 

viruses oscillatory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The open-loop behavior of the system with initial conditions target cells (T)=106 , viruses (V)=50, pro-
ductively infected cells (I)=0, latently infected cells (L)=100, effector cells(L)=0.5. The system moves to a non-

zero population of viruses oscillatory
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is obtained:

where 
 

  E E

B D

c cV V
p pA b d

c ck V k V
p p

  
   

    
   

 .  

(11) 
   

2

1

E

L
L

L

c cm
p A pT t a

a d



 



 

 
 

 

 

 
 

* * * * *
1, 1 1 1 1 1

6 4

, , , ,

10 ,21.9,6.56 10 ,0.252,0.724

V V V V V VE T V L I E


 


 (12) 

 
 

* * * * *
2, 2 2 2 2 2

6

, , , ,

10 ,66.3,0.002,0.762,0.724

V V V V V VE T V L I E 
 (13) 

 
 

* * * * *
3, 3 3 3 3 3

5 4 3

, , , ,

8.714 10 ,9.6 10 ,2.52,1.104 10 ,0.334

V V V V V VE T V L I E 

  
 (14) 

 

 

 

 

 

 

 

 

 

 

 

 

 (11)

The intersections of Eqs. (7) and (11) are the viral 
equilibrium points of the system, which shows in Fig. 4 using 
the parameters presented in Table 1.

There are three viral equilibrium points using the 
parameters presented in Table 1.
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3- 2- Stability analysis
The indirect Lyapunov method is used to analyze the 

stability of the equilibrium points of the 5-DOF model. At 

first, the Jacobian matrix of the system is derived, and then 
the eigenvalues of each equilibrium point are calculated.

It is assumed that the Jacobian matrix of the system is
, , 1 to 5ijA i j  =  , such that:

 

 
Fig. 4. The viral equilibrium points by intersecting Eqs. (7) and (11). Based on the parameters presented in Table 1 three viral 

equilibrium points exist 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The viral equilibrium points by intersecting Eqs. (7) and (11). Based on the parameters 
presented in Table 1 three viral equilibrium points exist
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11 A d V    

 
14 A T   

 
21 LA V   

 
22 LA a d    

 
24 LA T   

  31 1 LA V    

 
32 A a  

  33 A mE    

  34 1 LA T    

 
35 A mL   

 
43A p  

 
44 A c   

    2 2
53  /   /E B B E D DA b k E k I d k E k I     

    55  / /E B E DA b I k I d I k I       

 
Other elements that are not mentioned are zero.
The eigenvalues for each equilibrium point are listed in 

Table 2.

3- 3- Bifurcation analysis
By equating the two equations obtained for the target 

cells, Eqs. (7) and (11), a single equation containing only the 
viruses population can be derived. The result of this equation 
can show the effect of each parameter on the virus behavior.
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The roots of the Eq. (15) show the population of the virus 
in the feasible viral equilibrium points. The locus of the virus 
population by changing the parameter m  is shown in Fig. 5. 
The parameter m  shows the effect of the immune system’s 
ability to remove viruses. In some values m , there are not 
any viral equilibrium points in the system. It means that the 
immune system has the required ability to remove viruses 
without any external treatment. By increasing m , which 
shows the ability of the immune system, the population of 
the viruses in the viral equilibrium points becomes smaller. 
Hence, reinforcing the immune system must be one of the 
treatment strategies to have finite duration treatment.

The bifurcation diagram with changes in the parameter 
Eλ  is shown in Fig. 6. Similar to the parameter m , in some 

values of Eλ  there is not any viral equilibrium points in 
the system. In other words, reinforcing the immune system 
causes to the elimination of the viral equilibrium points from 
the dynamics of the system.

The effect of changes in both parameters m  and  Eλ  is 
shown in Fig. 7. The number of feasible viral equilibrium 
points in each region is different from the other. In region 
“A” one viral equilibrium point exists in the system. In region 
“B” and “C” there are three and two viral equilibrium points 
in the system, respectively. In region “D” there are not any 
viral equilibrium points in the system. In other words, if the 
system is settled in this region, the immune system is capable 
of removing all viruses without any external treatment.

Considering the effect of parameters m  and Eλ  on the 
number and amount of equilibrium points, we consider the 
uncertainties in the two parameters whose changes have the 
greatest impact on the behavior of the system. In this way, 
we consider the constant behavior of parameter Eλ  and try 
to improve the model performance by considering variable 
parameter m .

4- HIV Treatment Strategy
The mathematical model of the system during the mixed 

antiretroviral therapy and immunotherapy is as follows.

Table 2. The eigenvalues of the obtained equilibrium points using the parameters presented in Table 1

 

 

Table 2. The eigenvalues of the obtained equilibrium points using the parameters presented in Table 1 

  1   2   3   4   5  

VFE .  0.01   2   24.3  0.0893  45 10   

1,VE   24.3   1.356   0.01   0.023   45 10   

2,VE   24.3   1.4   0.01   0.026   45 10   

3,VE   24.137   0.007 0.04i    0.007 0.04i    2.99   45 10   
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Fig. 5. Bifurcation diagram versus parameters m . In some values of the parameter m  there is not any viral equilibrium point. 

In other words, the immune system is capable of removing viruses in the absence of any treatment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Bifurcation diagram versus parameters m . In some values of the parameter m  there is not any viral equi-
librium point. In other words, the immune system is capable of removing viruses in the absence of any treatment

 

 

Fig. 6. Bifurcation diagram versus parameters E . In some values of the parameter E  there is not any viral equilibrium point. 

In other words, the immune system is capable of removing viruses in the absence of any treatment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Bifurcation diagram versus parameters Eλ . In some values of the parameter Eλ  there is not any viral equi-
librium point. In other words, the immune system is capable of removing viruses in the absence of any treatment
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where ε  shows the effectiveness of the antiretroviral 
drugs, such as RTI and PI. In the absence of the treatment 

0ε = . Immunotherapy affects the parameters of the system (
m ), which is shown by ( )vv t [50, 51]. The rate of variation 
of these parameters is assumed to be proportional to the input 
( )vv t . The value of mµ  depends on the dynamics of m . 

These coefficients are saturated to the final limits mk  that 
is related to the biological limitations of body organs and the 
accumulation of external effects [52].

Immunotherapy modifies the dynamics of HIV. After 
immunotherapy, the system’s dynamics have been changed. 
Antiretroviral therapy affects the states of the system. 

Suppose an input ( )u t  exerted to a system at a finite 
duration 2 1t t t∆ = −  in the following form:
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where nζ ∈  is the state vector of the system
( ), mu t ∈  is the input vector exerted to the system in a 

finite-duration 2 1t t t∆ = − , and rθ ∈  is some parameters 
of the system affected by the input ( )u t . In this case, after 
the input cessation for 2t t> , the dynamics of the system is 
( ) ( )( ) ( )( )   , '    , t f t f tζ ζ θ ζ θ= ≠ , because:
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In other words, the dynamics of the free system before and 
after the exertion of the input are different. When the values 
of some parameters of the system varied, it causes changes 
in the dynamics of the system. Some inputs have permanent 

 
Fig. 7. There are four regions based on the number of feasible viral equilibrium points in the system with changes in the 

parameters m  and E . In region “A” one viral equilibrium point exists in the system. There are two and three viral 

equilibrium points in the system in regions “C” and “B”, respectively. There is no viral equilibrium point in the system in 

region “D” 
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Fig. 7. There are four regions based on the number of feasible viral equilibrium points in the system with changes in 
the parameters m  and Eλ . In region “A” one viral equilibrium point exists in the system. There are two and three 
viral equilibrium points in the system in regions “C” and “B”, respectively. There is no viral equilibrium point in 

the system in region “D”



M. Nazari et al., AUT J. Mech. Eng., 5(2) (2021) 239-254, DOI: 10.22060/ajme.2020.17988.5880

248

effects on the system. These effects may be on the parameters 
of the system by changing their values. These inputs may be 
exerted to the system in the integral form (Equation 23). Eq. 
(23) is the integral form of the second part of the Eq. (22). If 
the integral of the function ( ) ( )( ),h t u tζ  is nonzero, then the 
effect of the input is accumulated on the parameter  θ .

In this paper, immunotherapy is used after antiretroviral 
therapy. In other words, when the populations of viruses 
are controlled by antiretroviral therapy, immunotherapy 
is imposed to modify the dynamics of the system. This 
modification is applied by changing the parameters of the 
system and reinforcing the immune system’s strength. 

4- 1- Finite duration antiretroviral therapy
The ART with 0.3 ε = every 80 days is imposed on 

the system up to 600 days [45]. The initial condition is 
610 , 50, 0, 1, 0.5. T V I L E= = = = = As shown in Fig. 8, after 

the termination of ART, the trajectory of the system comes 
back to its stable viral equilibrium point. In other words, due 
to the instability of the virus-free equilibrium point, alone 
ART is not able to cure HIV in a finite duration. In this case, 
the system comes back to 1,VE .

The behavior of the system during finite duration ART 
with the initial condition 610 , 50, 0, 100, 0.5T V I L E= = = = =  is 
shown in Fig. 9. The finite duration ART is unsuccessful due 
to the instability of the virus-free equilibrium point. In this 
case, the system comes back to 3,VE .

4- 2- Finite duration mixed treatment
Immunotherapy changes the parameter m . The strength 

of the CTL response, m , is a key parameter. In other words, it 
causes the immune system to be reinforced. The variation of 
the parameter m  during immunotherapy is shown in Fig. 10. 
During immunotherapy, the parameter m  is changed from 
0.42 to 0.8. The choice of m affects the predictions of the 
viral rebound time. It is expected that the distribution of the 
parameter m should be continuous on [0, 1]. However, there 
is no information about the distribution of m . It should be 
noted that the values ​​of m  parameter near 1, corresponding 
to EC, must be very rare [34].

When immunotherapy is implemented, the immune 
system is activated. Therefore, the strength of the immune 
system increased. In other words, the immune cells (CTL) 
can remove agents with more power. This power is reflected 
in the parameter m.

As shown in Fig. 10, immunotherapy shifts the parameter 
m  from region A to region D, in which there is no viral 
equilibrium point in the system, and the immune system is 
capable of removing viruses without any external treatment. 
After immunotherapy, ART was imposed. As shown in Figs. 
11 and 12, after finite duration ART, the virus population 
converges to zero due to the stability of the virus-free 
equilibrium point.

5- Conclusions
A novel finite duration treatment protocol is presented 

using mixed ART and immunotherapy. It is shown that just 
ART is not able to cure HIV in a finite duration. Hence, mixed 
ART-immunotherapy is proposed. The ART affects the states 

 

 

Fig. 8. The behavior of the system during finite duration ART with initial conditions target cells ( T )= 61 0 , viruses ( V )=50, 

productively infected cells ( I )=0, latently infected cells ( L )=1, effector cells( E )=0.5. Due to the instability of the virus-free 

equilibrium point, the system comes back to the stable viral equilibrium point 1,VE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The behavior of the system during finite duration ART with initial conditions target cells (T)=106 , 
viruses (V)=50, productively infected cells (I)=0, latently infected cells (L)=1, effector cells(E)=0.5. Due to the 

instability of the virus-free equilibrium point, the system comes back to the stable viral equilibrium point  
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Fig. 9.  The behavior of the system during finite duration ART with initial conditions  target cells (T) = 61 0 , latently infected 

cells (L) = 100, productively infected cells (I) = 0, effector cells (E) = 0.5 and viruses (V) = 50. Due to the instability of the 

virus-free equilibrium point, the system comes back to the stable viral equilibrium point 3,VE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The behavior of the system during finite duration ART with initial conditions  target cells (T) =106 , 
latently infected cells (L) = 100, productively infected cells (I) = 0, effector cells (E) = 0.5 and viruses (V) = 50. 
Due to the instability of the virus-free equilibrium point, the system comes back to the stable viral equilibrium 

point 3,VE  

  
Fig. 10. Changing the parameter m  using immunotherapy. Immunotherapy reinforces the immune system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Changing the parameter   using immunotherapy. Immunotherapy reinforces the immune system
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Fig. 11. The behavior of the system during finite duration mixed treatment with initial condition target cells (T) = 610 , latently 

infected cells (L) = 1, productively infected cells (I) = 0, effector cells (E) = 0.5 and viruses (V) = 50. Due to the stability of the 

virus-free equilibrium point, the system goes to VFE  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The behavior of the system during finite duration mixed treatment with initial condition target 
cells (T) =106 , latently infected cells (L) = 1, productively infected cells (I) = 0, effector cells (E) = 0.5 and 

viruses (V) = 50. Due to the stability of the virus-free equilibrium point, the system goes to VFE  

 

 

 

Fig. 12. The behavior of the system during finite duration mixed treatment with initial condition target cells (T) = 610 , latently 

infected cells (L) = 100, productively infected cells (I) = 0, effector cells (E) = 0.5 and viruses (V) = 50. Due to the stability of 

the virus-free equilibrium point the system goes to VFE  

 

 

Fig. 12. The behavior of the system during finite duration mixed treatment with initial condition target 
cells (T) =106 , latently infected cells (L) = 100, productively infected cells (I) = 0, effector cells (E) = 0.5 

and viruses (V) = 50. Due to the stability of the virus-free equilibrium point the system goes to VFE  
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of the system and immunotherapy modifies the dynamics of 
the system. Immunotherapy reinforces the immune system. To 
find which parameter should be modified, the dynamics of the 
system is analyzed. To achieve finite duration treatment, the 
virus-free equilibrium point must be stable. The bifurcation 
analysis shows that the killing rate of effector cells has a 
significant role in modifying the dynamics of the system. So, 
immunotherapy modifies the killing rate of effector cells. The 
simulation results show that the proposed treatment strategy 
can cure HIV in a finite duration.
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