[1] M.S. Ghidaoui, M. Zhao, D.A. McInnis, D.H. Axworthy, A review of water hammer theory and practice, Applied Mechanics Reviews, 58(1) (2005) 49-76.
[2] E.B. Wylie, V.L. Streeter, L. Suo, Fluid transients in systems, Prentice Hall Englewood Cliffs, NJ, 1993.
[3] W. Zielke, Frequency-dependent friction in transient pipe flow, Journal of basic engineering, 90(1) (1968) 109-115.
[4] A.E. Vardy, K.-L. Hwang, A characteristics model of transient friction in pipes, Journal of Hydraulic Research, 29(5) (1991) 669-684.
[5] A. Bergant, A. Ross Simpson, J. Vìtkovsk, Developments in unsteady pipe flow friction modelling, Journal of Hydraulic Research, 39(3) (2001) 249-257.
[6] B. Brunone, U. Golia, M. Greco, Some remarks on the momentum equation for fast transients, in: Proc. Int. Conf. on Hydr. Transients With Water Column Separation, 1991, pp. 201-209.
[7] M. Brunelli, Two-dimensional pipe model for laminar flow, Journal of fluids engineering, 127(3) (2005) 431-437.
[8] H. SHAMLOO, R. NOROOZ, M. MOUSAVIFARD, A review of one-dimensional unsteady friction models for transient pipe flow, Fen Bilimleri Dergisi (CFD), 36(3) (2015).
[9] A.E. Vardy, J.M. Brown, Transient, turbulent, smooth pipe friction, Journal of Hydraulic Research, 33(4) (1995) 435-456.
[10] A.K. Trikha, An efficient method for simulating frequency-dependent friction in transient liquid flow, Journal of Fluids Engineering, 97(1) (1975) 97-105.
[11] M. Zhao, Numerical solutions of quasi-two-dimensional models for laminar water hammer problems, Journal of Hydraulic Research, 54(3) (2016) 360-368.
[12] E. Wahba, Non-Newtonian fluid hammer in elastic circular pipes: Shear-thinning and shear-thickening effects, Journal of Non-Newtonian Fluid Mechanics, 198 (2013) 24-30.
[13] S. Mora, M. Manna, From viscous fingering to elastic instabilities, Journal of Non-Newtonian Fluid Mechanics, 173 (2012) 30-39.
[14] M. Darwish, J. Whiteman, M. Bevis, Numerical modelling of viscoelastic liquids using a finite-volume method, Journal of non-newtonian fluid mechanics, 45(3) (1992) 311-337.
[15] K. Missirlis, D. Assimacopoulos, E. Mitsoulis, A finite volume approach in the simulation of viscoelastic expansion flows, Journal of non-newtonian fluid mechanics, 78(2-3) (1998) 91-118.
[16] R. Poole, M. Alves, P.J. Oliveira, F.T.d. Pinho, Plane sudden expansion flows of viscoelastic liquids, Journal of Non-Newtonian Fluid Mechanics, 146(1-3) (2007) 79-91.
[17] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids. Vol. 1: Fluid mechanics, (1987).
[18] E. Wahba, Modelling the attenuation of laminar fluid transients in piping systems, Applied Mathematical Modelling, 32(12) (2008) 2863-2871.
[19] E. Wahba, Runge–Kutta time-stepping schemes with TVD central differencing for the water hammer equations, International journal for numerical methods in fluids, 52(5) (2006) 571-590.
[20] J.C. Maxwell, The Scientific Letters and Papers of James Clerk Maxwell: 1846-1862, CUP Archive, 1990.
[21] L.F. Shampine, Two-step Lax–Friedrichs method, Applied Mathematics Letters, 18(10) (2005) 1134-1136.
[22] F. Khalighi, A. Ahmadi, A. Keramat, Investigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods, Int. J. Eng. Trans. B Appl, 29 (2016) 590-598.
[23] E. Holmboe, W. Rouleau, The effect of viscous shear on transients in liquid lines, Journal of Basic Engineering, 89(1) (1967) 174-180.
[24] S. Mandani, M. Norouzi, M.M. Shahmardan, An experimental investigation on impact process of Boger drops onto solid surfaces, Korea-Australia Rheology Journal, 30(2) (2018) 99-108.