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ABSTRACT: In this paper, the occurrence of water hammer phenomenon is examined in a situation 
that instead of water, an upper-convected-Maxwell fluid flows in a pipe system. This phenomenon is 
called an upper-convected-Maxwell fluid hammer. This expression relates to transients of Maxwell fluid 
caused by the sudden alteration in the conditions of flow. Upper-convected-Maxwell fluids are a kind 
of non-Newtonian viscoelastic fluids. The system studied is a valve-horizontal pipe and reservoir. The 
equations representing the conservation of mass and momentum govern the transitional flow in the pipe 
system. The numerical method used is a two-step variant of the Lax-Friedrichs method. Firstly, the non-
dimensional form of governing equations is defined, then, the effect of Deborah and Reynolds numbers 
on pressure historic is investigated. The results revealed that increasing Deborah number, indicating 
the elasticity of the polymer, increases the oscillation height and consequently attenuation time of the 
transient flow becomes longer. It was also found that in low Reynolds, in a Newtonian fluid, line packing 
phenomenon effect is observed only at the first time period but in upper convected Maxwell fluid the 
effect of this phenomenon continues to more time periods and damping time becomes longer. 
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1- Introduction
The transitional flows due to the water-hammer 

phenomenon are classified in the group of unsteady flows. 
The hydraulic of transitional flow for the first time was first 
studied by Newton and Lagrange in the seventeenth century. 
Then, studies in this field continued widely. During the 
first quarter of the twentieth century, most studies on fluid 
hammer have been in the continent of Europe. Most of the 
studied concepts were related to the surge issue which was 
published by Joukowsky. He also achieved the formula for 
calculating the pressure due to the instantaneous closure 
of valve in the reservoir-pipe-valve system. Accordingly, 
numerous researchers have examined the fluid hammer 
phenomenon using various numerical methods. A detailed 
review of this matter has been given by  Ghidaoui et al. [1] 
Computational techniques for this type of fluids is built on 
the mass and momentum equations, which is easily solvable 
using the characteristics approach. They generally provide 
an accurate prediction of the maximum pressure rise which 
usually occurs during the first pressure peak. Wylie et al. 
[2] developed a numerical model by using a constant value 
of turbulent friction factor. Multiyear study of the scientists 
has resulted in developing numerical models of hydraulic 
transients with the unsteady friction. The progress of the first 
group of models was originated in 1968 by Zielke [3]. In his 
study, an equation was derived, which related the wall shear 
stress in transitional laminar pipe flow to the instantaneous 

mean velocity and to the weighted past velocity changes. 
Zielke [3] concluded that frequency-dependent effects of 
viscosity can be included into the one dimensional model of 
transient flow using the Method Of Characteristics (MOC). 
Vardy and Hwang [4] developed a quasi two-dimensional 
model of transient flows using the one dimensional method 
of characteristics in concentric cylindrical. They showed that 
Zielke’s [3] model provides a good first approximation for 
transient turbulent flows. Bergant et al. [5] combined two 
unsteady friction models proposed by Zielke [3] and Brunone 
et al. [6] into MOC water hammer analysis. They compared 
the numerical results achieved for pressure heads with the 
results of measurements of fast valve closure in a laboratory 
device with laminar and turbulent flow condition. Brunelli [7] 
presented a model which gives the two-dimensional velocity 
profile in the time domain for an unstationary pipe flow. 
He tested his model on the experimental results presented 
by Zielke [3] and the agreement of his simulation with the 
experiment was satisfactory. Shamloo et al. [8] presented a 
review of unsteady friction models for transient pipe flow. 
They considered models which instantaneous wall shear 
stress is the sum of the quasi-steady value plus a term in which 
certain weights are given to the past velocity changes such as 
Zielke [3] , Vardy and Brown [9] and Trikha [10] in one group 
and other models in another group and concluded that Zielke 
[3] model yields better conformance with the experimental 
data. Zhao [11] proposed the modified Chebyshev polynomial 
expansions of the radial distribution of the axial velocity and 
radial component flux for solving the quasi-two-dimensional 
equations of the water-hammer problem under laminar flow *Corresponding author’s email: a.ahmadi@shahroodut.ac.ir
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conditions. The results obtained from his proposed model 
are almost coincident with those obtained from the model of 
Vardy and Hwang [4] and both agree with the experimental 
data well. In this work, the authors consider the case in which, 
instead of water, a kind of non-Newtonian viscoelastic fluid 
called Upper-Convected-Maxwell (UCM) fluid flows in the 
pipe system. Unlike Newtonian fluid hammer, there is not a 
great amount of work on the non-Newtonian fluids. Wahba 
[12] studied shear-thinning and shear-thickening effects on 
non-Newtonian fluid hammer in elastic circular pipes. He 
concluded that the shear-thickening behavior results in more 
rapid attenuation of the fluid transient and excessive pipeline 
packing which would lead to a pressure rise at the valve that 
would significantly exceed the inviscid Joukowsky pressure 
rise. Besides, An upper-convected-Maxwell fluid is a type of 
viscoelastic fluids. Viscoelastic fluids are a common form 
of Non-Newtonian fluids. They can exhibit a response that 
resembles that of an elastic solid under some conditions, or 
the response of a viscous liquid under other situations. In 
these fluids, contrary to the Newtonian ones, a linear relation 
between the stress tensor and the rate of deformation tensor 
do not hold. So, they need more complicated constitutive 
relationships to close the system of equations that has to be 
solved. Mora and Manna [13] presented an analytical and 
numerical study of the linear Saffman–Taylor instability 
for a Maxwell viscoelastic fluid. Darwish et al. [14] and 
later Missirlis et al. [15] used a finite-volume technique to 
simulate the flow of a viscoelastic liquid through a 1:4 plane 
sudden expansion using the upper convected Maxwell model. 
Poole et al. [16] reported the results of a systematic numerical 
investigation, using a finite volume technique, of the creeping 
flow (Re= 0.01) of three model viscoelastic fluids, the UCM, 
Oldroyd-B and the Phan-Thien-Tanner (PTT) models. In 
general, and up to the present author’s best knowledge, it 
seems to be a lack of studies investigating fluid transients 
with upper convected Maxwell fluids in pipes. These 
fluids are used as melted polymers in chemical and food 
industries to produce specific products. Considering that the 
application of these fluids in pipes are increasing, attention 
to fluid hammer phenomenon and it’s numerical modelling 
seems necessary. The present study aims to bridge the gap 
between fluid hammer theory and upper convected Maxwell 
fluids mechanics. For this purpose, at first, two equations 
representing the conservation of mass and momentum govern 
the transitional flow for non-Newtonian fluids are derived and 
then a two-step variant of the Lax-Friedrichs (LxF) method is 
used to discretize the governing equations of fluid hammer 
using Maxwell model relations. Computational results are 
presented in terms of the time history of pressure head at 

critical points of a pipe such as at the valve and mid-length of 
the pipe. The results reveal that the viscoelastic fluid effects 
significantly contribute to attenuation time of transient flow. 
To our knowledge, this study represents the first attempt to 
the modelling of upper-convected-Maxwell fluid hammer 
due to the sudden closure of a downstream valve in a simple 
reservoir-pipe-valve system. The schematic shape of the 
problem is shown in Fig. 1.

Fig. 1 shows that the pipe system consists of a reservoir at 
the upstream end of the horizontal pipeline and a valve at the 
downstream end discharging to the atmosphere. This paper is 
organized as follows:

Section I: Transitional flows as Introduction section 
is defined and then the studies related to fluid-hammer 
phenomenon, is reviewed.

 Section II: Firstly, the equations governing of the fluid 
hammer including continuity and momentum equations 
are presented and constitutive equations for modelling 
of upper-convected-Maxwell fluid are introduced and 
non-dimensionalized. Then LxF numerical method used 
is explained. As following, to assess the accuracy of the 
numerical method and proposed model, firstly, the governing 
equations of classical water- hammer are derived and then 
numerical solutions and Zielk method solutions for steady 
state at the valve and pipe midpoint are compared.

Section III: For obtaining the results near to the 
physical conditions, we used the properties of a dilute 
polymeric solution and a real geometry to obtain the typical 
dimensionless groups.

Section IV: The effect of Debora and Reynolds numbers 
as non-dimentional parameters on the behavior of upper-
convected-Maxwell fluid during fluid hammer phenomena 
in a simple reservoir-pipe-valve system are investigated and 
compared to Newtonian fluid. 

2- Formulation
2- 1- Governing equations

The equations for fluid transients in pipes are continuity 
and axial momentum equations. The continuity equation 
for transient pipe flow in a cylindrical coordinate system 
considering axial symmetry can generally be stated as follows 
[17]: 
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where zv and rv  represent the axial and radial velocity 
components, respectively, c  is the wave speed, H  is the 
pressure head and t  is time. The momentum equation in 
cylindrical coordinates in the axial direction is [17]:
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where ρ  is density, p is pressure, rzτ  is stress shear in 
the liquid and: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic of the reservoir-pipe-valve system
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Here, fE is the bulk modulus of compressibility for the 
fluid, pE is the Young’s modulus of elasticity for the pipe 
material, e  is the pipe thickness and D  is the pipe diameter 
[18]. Using order of magnitude analysis, Wahba [19] and 
Ghidaoui et al. [1] showed that the nonlinear convective 
terms could be neglected from the continuity and axial 
momentum equations, since the wave speed is several orders 
of magnitude larger than the flow velocity. Moreover, it 
should be noted that the radial velocity in the laminar flow at 
the pipe wall and at the centerline is zero.

The problem modeling is done one-dimensionally, so for 
fluid hammer modeling with UCM fluid, using the above 
assumptions, the Eqs. (1) and (2) can be integrated across the 
pipe cross section and the transitional pipe flow model takes 
the following form:
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where V is the average cross-sectional velocity and R is the 
pipe radius.
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2- 2- Constitutive equations

In this paper, upper convected Maxwell model is used 
as the constitutive equation. This model was proposed by 
Maxwell [20]. The general form of this model is as follows 
[17]: 
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Where τ  is the stress tensor, λ is the relaxation time, η  
is viscosity of the polymer, τ

∇
 is upper convected derivative 

of the stress tensor and defined as:
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γ  is the upper convected derivatives of the rate of the 
strain tensor as follows:
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Considering the Poiseuille velocity distribution profile 
equation for laminar flow in a long pipe and replacing the 
appropriate values in Eq. (7) the shear stress rz r R

τ
=  is 

obtained. So, the governing equations for viscoelastic fluid 
hammer are given by:
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It should be noted in the above equations that convective 
terms have been neglected. Replacing relaxation time term 
in the momentum equation with zero, the classical water-
hammer equations are obtained.
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Replacing 64 64
2

f
V R Re
η

ρ
= =  in Eq. (14) for laminar fluid 

hammer, the conventional form of the momentum equation in 
classical water hammer is obtained:
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where f  is the Darcy-Weisbach friction factor and g  is 
the acceleration due to gravity.

2- 3- Initial and boundary condition
Initial and boundary conditions complete the mathematical 

description of the problem. The initial conditions are taken 
according to the steady state situation of the system. The 
boundary conditions describe the situation at the pipe ends, 
where for instance a reservoir or valve is located. The 
boundary conditions that describing a constant head reservior 
with a pipe rigidly connected to it, is 0H H=  where Subscript 
0 shows the value of variables in steady state situation of the 
system.

2- 4- Non-dimensionalization of the equations
The different variables are normalized according to the 

following relations:
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where 0v  is the velocity in steady state and non–
dimensional numbers involved in this study are:
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where De denotes the Deborah number which is a 
dimensionless number defined based on the corresponding 
relaxation time of each viscoelastic medium [17], M is 
Mach number and is defined as the square root of the ratio of 
inertia force to the elastic force and Re  is Reynolds number. 
Substituting into the Eqs. (10) to (12), the non-dimensional 
equations take the form:
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The non-dimensional equations for Newtonian fluid 
hammer are also as follows:
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2- 5- LxF numerical method
The basis of LxF method is the finite difference method and 

it’s a good choice for solving Partial Differential Equations 
(PDEs). The LxF method is conservative and monotone, 
therefore, this is a Total Variation Diminishing (TVD) 
method [21]. As for the original Godunov method, the LxF 
scheme is based on a piecewise constant approximation of the 
solution, but it does not require solving a Riemann problem 
for time advancing and only uses flux estimates. LxF method 
is available for all forms of PDEs [21]. The stability condition 
is 1c t

x
∆

≤
∆

 and c is wave speed. Here, the numerical method 
used is a two-step variant of  mention method. Generally, 
multi-step methods increase convergence and accuracy in the 
numerical problems.  In this study, two-step variant of LxF 
method is used. In this method, firstly, a half time step is taken 
based on LxF scheme on a staggered mesh. Next, the second 
half step is implemented based on LxF to reach at the solution 
on the original mesh. In Fig. 2, stencil of conventional LxF 
and two-step LxF are plotted.

Fig. 2 shows that in two-step LxF method, one time step is 
divided into two halves. Note that in this state, at the first step, 
the values of the function U in spatial nodes =1, 2,..., -1i v
and the time 0.5n + on a grid mesh is obtained where v is the 
node in the place of the valve and in the second half step, the 
values of the function U  in spatial nodes i=1, 2,..., -1v  and 
the time 1n +  on the original mesh is achieved.

In this one-dimensional simulation, the stability condition 
is considered 0.99. Table 1 lists the spatial step sizes for the 
three different grids used in the verification of the present 
numerical procedure.
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Fig. 2. Stencil of LxF method [22]
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Fig. 3 shows the pressure–time history at the downstream 
valve using all three grids. As can be seen from the figure, 
the medium and fine grids provide nearly identical results. 
In order to reduce computational cost, the second grid in this 
paper is used which in it, the pipe is divided into 2000 parts. 
To validate the proposed model, the results of the derived 
equations for the newtonian fluid are compared to Zielke 
[3] numerical method results for steady state friction on 
experimental data [23] at the valve and pipe midpoint. 

Fig. 4 shows a good agreement between the results of an 
upper convected Maxwell model for Newtonian fluid and 
Zielke [3] numerical method results for steady state friction 
on experimental data in terms of the pressure–time history at 
the valve and pipe midpoint, respectively.

3- Numerical Modelling
In this section a polymer as an upper-convected-Maxwell 

fluid made in the laboratory is examined and the effect of 
Deborah and Reynolds numbers on the behavior of this 
polymer in different cases during fluid hammer phenomena 
due to the sudden closure of a downstream valve in a simple 
reservoir-pipe-valve system is studied. Firstly, for obtaining 

the results near to the physical conditions, we used the 
properties of a dilute polymeric solution and a real geometry 
to obtain the typical dimensionless groups. For this purpose, 
a solution of polyacrylamide (100 ppm) in a glycerin/de-
ionized water is considered as typical viscoelastic fluid. The 
molecular mass of polyacrylamide is 65 10wM = × gr/mol 
and degree of purity of glycerin is 99%. The viscometric test 
of this solution indicate that the viscosity has a constant value 
of 0.08918  Pa.s in a wide range of shear rate [24] so it could 
be considered as a Boger liquid and the UCM constitutive 
equation is suitable to describe the mechanical behavior 
of this solution. The results of curve fitting of four modes 
generalized Maxwell model on the data of sweep frequency 
test at constant 10% of strain are presented in Table 2. Here, 
mode zero indicate the Newtonian contribution of model. 
Based on the data of this table, the fluid has an average 
relaxation time of 1.9 s [24]. 

So the value of relaxation time is considered 1.9 s. The 
other properties and pipe configuration data are presented in 
Table 3.

Generally in fluid hammer phenomenon, after the 
sudden closure of the valve, the fluid’s velocity at the valve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Grid independence for pressure–time history at the valve
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0.00100 1 
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Table 1. Non-dimensional spatial step sizes for the different grids 

 

 

 

  

A. At valve B. At midpoint 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Validation of present UCM model for Newtonian fluid hammer 
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reaches to zero and at the same moment, kinetic energy is 
completely transformed into the potential. This imposed 
potential energy causes the pressure head at the valve to rise 
equivalent to Joukowsky head. The Joukowsky pressure rise 
is the maximum pressure rise that would occur during the 
transient when viscous effects are neglected and is equal to 

0cv
g

. It should be noted that the all qualifications of numerical 
modeling such as diameter and length of pipe, wave speed,.. 
except fluid type are similar to experiment of Holmboe and 
Rouleau [23]. 

In Fig. 5 two key points can be observed. The first point is 
related to the maximum pressure at the valve. The Joukowsky 
pressure rise must be the maximum pressure rise that would 
occur during the transient at the valve when viscous effects 
are neglected, but in Fig. 5 the pressure rise is higher than 
Joukowsky’s head, from t*=0 to t*=2 which this point can be 
observed in both Newtonian and upper convected Maxwell 
fluid. The second point is associated with attenuation time 
or damping time of transitional flow in two fluids. As shown 
in the Fig. 5, the height of the transitional flow in the upper 
convected Maxwell fluid compared to the Newtonian fluid is 
higher which leads to longer attenuation time.

The first point is related to pipeline packing or line 
packing phenomenon [18]. In this phenomenon, the value 

of transient pressure continues to rise above the Joukowsky 
pressure value due to frictional effects. In the case of the 
second point, it must be referred to the viscoelastic properties 
of the fluid. In a Newtonian fluid, after the imposition of the 
potential energy caused by the sudden closure of the valve, 
viscous characteristic of the liquid damps the pressure wave 
gradually. In an UCM fluid, solid and liquid properties of in 
it, show different reactions to this sudden potential energy at 
the same time. In fact, an UCM fluid, has elastic properties. 
Relaxation time as an elastic property plays an important role 
in storing the potential energy imposed on the fluid. This 
character of an UCM fluid, is caused the damping time of the 
transition flow becomes longer compared to Newtonian fluid. 

4- Results and Discussion
To study more precisely the pressure wave behavior, 

numerical modeling is also performed for other polymeric 
solutions with less molecular weight and relaxation time 
constant and the effect of dimensionless numbers of governing 
equation on pressure time history at valve and midpoint is 
investigated. It should be noted that Mach number in fluid 
hammer phenomenon is very little [1], therefor its effect is 
ignored.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Mode no. Dynamic viscosity 
(Pa.s) 

Relaxation time constant 
(s) 

0 0.0319 0 

1 0.0625 4-e7.088 

2 0.0131 0.2469 

3 0.0025 10.2117 

4 0.0151 9.9311 
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Values Properties  
36.09 Pipe length (m) 

0.128 Mean velocity (m/s) 

1324 Pressure wave speed (m/s) 
0.0253 Pipe diameter (m) 

0.8 Darcy-Weisbach friction factor 
2200 Specific density of fluid (kg/m3) 

0.08918 Dynamic Viscosity (Pa.s) 
80 Reynolds Number 
9.6 Deborah Number 

9.66e-5 Mach number 

Table 2. Spectrum of relaxation time and viscosity [24]

Table 3. Properties and pipe configuration data
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A. At valve B. At midpoint 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

A. At valve B. At midpoint 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The comparison of pressure time history in Newtonian and upper convected Maxwell fluid hammer 
80 9.66 -5Re = ,M = e

Fig. 6. The effect of Deborah number on pressure time history during upper convected Maxwell fluid hammer 
80 9.66 -5Re = ,M = e
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4- 1- The effect of Deborah number 
To investigate the effect of Deborah number on pressure 

time history at the valve and midpoint, the mentioned polymer 
with a number of polymers with less relaxation times which 
resulted in less Deborah numbers are selected. In Fig. 6 the 
effect of Deborah number on pressure time history during 
upper convected Maxwell fluid hammer.

According to Fig. 6 with increasing Deborah number, 
The height of the pressure wave increases. The reason for 
this behavior is related to relaxation time constant. This 
property supports the solid properties in UCM fluid. When 
the solid property is increased in the UCM fluid, the tendency 
to hold imposed energy is increased and so damping time 
of transitional flow becomes longer. In fact the behavior of 
polymer in the low Deborah number is similar to Newtonian 
fluid. It also can be observed that in all cases at valve, line 
packing or pipeline packing effect increases the pressure 
from the Joukowsky pressure.

4- 2- The effect of Reynolds number 
The pressure wave of fluid hammer, even in a Newtonian 

case, is sensitive to Reynolds number (Eq. (22)). In Figs. 7 
and 8 the effect of Reynolds number on pressure time history 
in Newtonian and upper convected Maxwell fluid are shown.

As shown in Figs. 7 and 8, the overall pressure changes 
in Newtonian and UCM fluids are similar but the sensitivity 
is higher in the Newtonian case, especially for low Reynolds 
numbers. It means in laminar fluid hammer phenomenon, 
the strength of fluid viscosity as a friction effect in increased 
and consequently transient flow damping occurs sooner. In 
fact, the larger Reynolds number, the longer the attenuation 
time and this general trend repeats similarly in UCM fluid 
hammer. An important point in Figs. 7 and 8 is the intense 
impact of line packing or pipeline packing phenomenon [18] 
at valve. As it is clear, the lower Reynolds number, the higher 
the viscosity of fluid and thus line packing effect can be more 
noticeable. In low Reynolds, in Newtonian fluid, line packing 
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Fig. 8. The effect of Reynolds number on pressure time history in upper convected Maxwell fluid hammer 
9.6, 9.66 5De M e= = −

Fig. 7. The effect of Reynolds number on pressure time history in Newtonian Fluid hammer 0, 9.66 5De M e= = −
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effect is observed only at the first time period but in UCM 
fluid the effect of this phenomenon continue to more time 
periods and damping occures longer compared to Newtonian 
fluid.

5- Conclusion 
A special kind of viscoelastic fluid hammer phenomenon 

called upper-convected-Maxwell fluid hamme is modeled. 
The fluid transient is generated by the sudden closure of the 
downstream valve. Equations representing the conservation 
of mass and momentum govern the transitional flow in the 
pipes. Upper-convected-Maxwell model relations are used 
as constitutive equations. The numerical method used is 
a two-step variant of LxF method. Dimensionless groups 

derived at the governing equations during this phenomenon 
are Deborah, Reynolds and Mach which Reynolds and Mach 
numbers also can be derived at Newtonian state. Regardless 
of Mach number because of the very small amount, the effect 
of other non-dimensional groups on pressure time history 
during fluid hammer at valve and midpoint of the pipe was 
investigated and compared to the Newtonian fluid hammer. 
The results of this study show that relaxation time coficient 
as one of the main characteristics of the UCM fluid plays an 
important role in increasing the height of the pressure wave. 
Also, the effect of this characteristic leads to the reduction 
of sensitivity to Reynolds number changes compared to 
Newtonian fluids.

 
Nomenclature 

c Wave speed (m/s) H Pressure head (m) 

D Pipe diameter (m) k 
The coefficient of restriction for axial pipe 
movement 

De Deborah number M Mach number 

E Bulk modulus of compressibility (Pa) p Pressure (Pa) 
f Darcy-Weisbach friction factor R Pipe Radius (m) 
e Pipe thickness (m) Re Reynolds number 
g )2ravity acceleration (m/sG 

0v Velocity in steady state (m/s) 

Greek symbols V Average cross-sectional velocity (m/s) 
 viscosity (Pa.s)  Polymer p Superscripts 
τ Stress (Pa)  Tensor  Previous time steps  


τ Upper convected derivative of the stress tensor (Pa) Next time steps 

 )3(kg/m Density Subscripts 

rz 
Average stress components in the liquid in the 
corresponding surface and directions (Pa) f Fluid 

zz 
Average stress components in the liquid in the 
corresponding surface and directions (Pa) p Pipe material 

 The thickness of the boundary layer (m) r Radial direction 

 Average stress z Axial direction 

 Relaxation time (s)   
 Poisson’s ratio   
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