[1] R. Cooter, W. Babidge, K. Mutimer, Ultrasound-assistedlipoplasty, ANZ Journal of Surgery, 71(5) (2001) 309-317.
[2] D. Duscher, Z.N. Maan, A. Luan, M.M. Aitzetmüller,E.A. Brett, D. Atashroo, A.J. Whittam, M.S. Hu, G.G.Walmsley, H.-g. Machens, G.C. Gurtner, M.T. Longaker,D.C. Wan, Ultrasound-assisted liposuction providesa source for functional adipose-derived stromal cells,Cytotherapy, 19(12) (2017) 1491-1500.
[3] M. Brock, I. Ingwersen, W. Roggendorf, Ultrasonicaspiration in neurosurgery, Neurosurg Rev, 7(2-3) (1984)173-177.
[4] T. Sun, Y. Zhang, C. Power, P.M. Alexander, J.T. Sutton,M. Aryal, Closed-loop control of targeted ultrasound drug delivery across the blood – brain / tumor barriers in a ratglioma model, Proceedings of the National Academy ofSciences of the United States of America, 114(48) (2017)E10281-E10290.
[5] Y.-T. Wu, A. Adnan, Effect of Shock-Induced CavitationBubble Collapse on the damage in the SimulatedPerineuronal Net of the Brain, Scientific Reports, 7(1)(2017) 5323.
[6] H.B. Dick, T. Schultz, A Review of Laser-AssistedVersus Traditional Phacoemulsification Cataract Surgery, Ophthalmology and Therapy, 6(1) (2017) 7-18.
[7] A.J. Coleman, J.E. Saunders, L.A. Crum, Acousticcavitation generated by an extracorporeal shockwavelithotripter, Ultrasound Med. Biol, 13(2) (1987) 69-76.
[8] S. Cao, Y. Zhang, Assessing the effect of lithotripter focal width on the fracture potential of stones in shockwavelithotripsy, Journal of the Acoustical Society of America,141(5) (2017) 3718.
[9] M. Shim, M. Park, H.K. Park, The efficacy of performing shockwave lithotripsy before retrograde intrarenalsurgery in the treatment of multiple or large (≥1.5 cm) nephrolithiasis: A propensity score matched analysis, investigative and clinical urology, 58(1) (2017) 27-33.
[10] C.K. Turangan, G.J. Ball, A.R. Jamaluddin, T.G.Leighton, Numerical studies of cavitation erosion on anelastic – plastic material caused by shock-induced bubblecollapse Subject Areas, Proceedings of the Royal SocietyA: Mathematical, Physical and Engineering Sciences,473(2205) (2017) 20170315.
[11] D. Igra, O. Igra, Numerical investigation of theinteraction between a planar shock wave with square andtriangular bubbles containing different gases, Physics ofFluids, 30(5) (2018) 056104.
[12] R.O. Cleveland, M.R. Bailey, N. Fineberg, Design andcharacterization of a research electrohydraulic lithotripter patterned after the Dornier HM3, Rev. Sci. Instrum.,71(6) (2000) 2514-2525.
[13] V. Coralic, T. Colonius, Shock-induced collapse of abubble inside a deformable vessel, Eur J Mech B Fluids,40 (2013) 64-74.
[14] M.R. Bailey, Y.A. Pishchalnikov, Cavitation detectionduring shock-wave lithotripsy, Ultrasound Med. Biol.,31(9) (2005) 1245-1256.
[15] M. Lokhandwalla, B. Sturtevant, Fracture mechanicsmodel of stone comminution in ESWL and implicationsfor tissue damage, Phys. Med. Biol, 45(7) (2000) 1923-1940.
[16] L.A. Crum, Cavitation microjets as a contributorymechanism for renal calculi disintegration in ESWL, J.Urol., 140(6) (1988) 1587-1590.
[17] K.G. Wang, Multiphase Fluid-Solid Coupled Analysisof Shock-Bubble-Stone Interaction in ShockwaveLithotripsy, International Journal for Numerical Methodsin Biomedical Engineering, 33(10) (2017) cnm.2855.
[18] H. Chen, A. Brayman, M.R. Bailey, Blood vesselrupture by cavitation, Urol. Res, 38(4) (2010) 321-326.
[19] H. Chen, W. Kreider, A.A. Brayman, M.R. Bailey, T.J.Matula, Blood vessel deformations on microsecond timescales by ultrasonic cavitation, Physical Review Letters,106(3) (2011) 034301.
[20] C. Weber, M.E. Moran, E.J. Braun, Injury of rat renalvessels following extracorporeal shock wave treatment,J.Urology,, 147(2) (1992) 476-481.
[21] P. Zhang, Y.F. Zhu, S.L. Zhu, Dynamics of bubbleoscillation in constrained media and mechanisms ofvessel rupture in SWL., Ultrasound Med. Biol., 27(1)(2001) 119-134.
[22] Rayleigh, On the pressure developed in a liquid duringthe collapse of a spherical cavity, Phil. Mag., 34(200)(1917) 94-98.
[23] R. Hickling, M.S. Plesset, Collapse and rebound of aspherical bubble in water, Physics of Fluids, 7(1) (1964)7-14.
[24] M. Kornfeld, L. Suvorov, On the destructive action ofcavitation, Journal of Applied Physics, 15(6) (1944) 495-506.
[25] T.B. Benjamin, A.T. Ellis, The Collapse of CavitationBubbles and the Pressures thereby Produced against Solid Boundaries, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 260(1110) (1966) 221-240.
[26] C.D. Ohl, R. Ikink, Shock-Wave-Induced Jetting ofMicron-Size Bubbles, Physical Review Letters, 90(21)(2003) 214502.
[27] C.L. Kling, F.G. Hammitt, A Photographic Study ofSpark-Induced Cavitation Bubble Collapse, J. Basic Eng,94(4) (1972) 825-832.
[28] B.H.T. Goh, Y.D.A. Oh, E. Klaseboer, S.W. Ohl,B.C. Khoo, A low-voltage spark-discharge method forgeneration of consistent oscillating bubbles., Review ofScientific Instruments, 84(1) (2013) 014705.
[29] J.A. Cook, A.M. Gleeson, R.M. Roberts, R.L. Rogers,A spark-generated bubble model with semi-empiricalmass transport, J. Acoust. Soc. Am., 101(4) (1997) 1908-1920.
[30] Y. Tomita, A. Shima, Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse,J.Fluid Mech, 169 (1986) 535–564.
[31] T. Kodama, K.A.T. Takayama, Dynamic behavior ofbubbles during extracorporeal shock-wave lithotripsy,Ultrasound in Medicine and Biology, 24(5) (1998) 723-738.
[32] S. Li, A.M. Zhang, R. Han, Y.Q. Liu, Experimental andnumerical study on bubble-sphere interaction near a rigidwall Experimental and numerical study on bubble-sphereinteraction near a rigid wall, Physics of Fluids, 29(9)(2017) 092102.
[33] M.S. Plesset, R.B. Chapman, Collapse of an initiallyspherical vapour cavity in the neighbourhood of a solidboundary, J. Fluid Mech, 47(2) (1971) 283–290.
[34] J.R. Blake, B.B. Taib, G. Doherty, Transient cavitiesnear boundaries. Part 1. Rigid boundary., J. Fluid Mech,170 (1986) 479–497.
[35] E. Klaseboer, C. Turangan, S.W. Fong, T.G. Liu,Simulations of pressure pulse-bubble interaction usingboundary element method, Comput. Methods Appl.Mech. Engrg, 195 (2006) 4287–4302.
[36] S. Popinet, S. Zaleski, Bubble collapse near a solidboundary: a numerical study of the influence of viscosity,Journal of Fluid Mechanics, 464 (2002) 137-163.
[37] G.J.J. Ball, B.P.P. Howell, T.G.G. Leighton, M.J.J.Schofield, Shock-induced collapse of a cylindrical aircavity in water: a Free-Lagrange simulation, ShockWaves, 10(4) (2000) 265-276.
[38] A.R. Jamaluddin, Free-lagrange simulations ofshock-bubble interaction in extracorporeal shock wavelithotripsy, University of Southampton, 2005.
[39] S.k. Hara, Dynamics of nonspherical bubbles surrounded by viscoelastic fluid, Journal of Non -Newtonian FluidMechanics, 14 (1984) 249-264.
[40] C. Kim, Collapse of spherical bubbles in Maxwellfluids, Journal of Non-Newtonian fluid Mechanic, 55(1)(1994) 37-58.
[41] E.A. Brujan, Y. Matsumoto, T. Ikeda, Dynamics ofultrasound-induced cavitation bubbles in non-Newtonianliquids and near a rigid boundary, Physics of Fluids,16(7) (2004) 2402.
[42] M.J. Walters, An Investigation into the Effects ofViscoelasticity on Cavitation Bubble Dynamics withApplications to Biomedicine, school of MathematicsCardiff University, 2015.
[43] S.J. Lind, T.N. Phillips, The influence ofviscoelasticity on the collapse of cavitation bubbles neara rigid boundary, Theoretical and Computational FluidDynamics, 26(1-4) (2012) 245–277.
[44] C. F.Rowlatt, S. J.Lind, Bubble collapse near a fluid-fluid interface using the spectral element marker particlemethod with applications in bioengineering, International Journal of Multiphase Flow, 90 (2017) 118-143.
[45] A. Murrone, H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal ofComputational Physics, 202(2) (2005) 664-698.
[46] F.H. Harlow, A.A. Amsden, Fluid dynamics: A LASLmonograph(Mathematical solutions for problems in fluiddynamics).
[47] L. Zhang, C. Yang, Z.S. Mao, Numerical simulation ofa bubble rising in shear-thinning fluids, Journal of Non-Newtonian Fluid Mechanics, 165(11-12) (2010) 555-567.
[48] F. Toro, Riemann solvers and numerical methods forfluid dynamics, a practical introduction,Springer Science& Business Media, 2009.
[49] K.-M. Shyue, An Efficient Shock-Capturing Algorithmfor Compressible Multicomponent Problems, Journal ofComputational Physics, 142(1) (1998) 208-242.
[50] B. van Leer, Towards the ultimate conservativedifference scheme. V. A second-order sequel toGodunov’s method, Journal of Computational Physics,32(1) (1979) 101-136.
[51] K. So, X. Hu, N. Adams, Anti-Diffusion InterfaceSharpening Technique for Two Phase CompressibleFlow Simulations, J. Comput. Phys., 231(11) (2012)4304-4323.
[52] N.K. Bourne, J.E. Field, Shock-induced collapse ofsingle cavities in liquids, Journal of Fluid Mechanics,244 (1992) 225-240.
[53] H. Terashima, G. Tryggvason, A front-tracking/ghost-fluid method for fluid interfaces in compressible flows,Journal of Computational Physics, 228(11) (2009) 4012-4037.
[54] R.R. Nourgaliev, T.N. Dinh, T.G. Theofanous, Adaptive characteristics-based matching for compressiblemultifluid dynamics, Journal of Computational Physics,213(2) (2006) 500-529.
[55] W. Bo, J.w. Grove, A volume of fluid method basedghost fluid method for compressible multi-fluid flows,Computers and Fluids, 90 (2014) 113-122.
[56] S.S. Shibeshi, W.E. Collins, The Rheology of BloodFlow in a Branched Arterial System, Appl Rheol, 15(6)(2005) 398-405.