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ABSTRACT: An unsteady compressible multiphase flow solver is developed and used to simulate shock-
bubble interaction in a non-Newtonian fluid. A five-equation multiphase model that accounts for capillary 
and viscous effects is employed and discretized by finite volume methodology. Harten-Lax-Van Leer-
contact Riemann solver is invoked to compute the convective fluxes and tangent of hyperbola for interface 
capturing interface sharpening scheme is applied to reduce the excessive diffusion at the interface. Multiple 
benchmark problems such as air-helium shock tube, shock cavity interaction, Rayleigh-Taylor instability 
and underwater explosion are probed to evaluate the performance and accuracy of this method. The results 
obtained compare well with the available experimental and numerical data. The developed solver is then 
used to study shock-interface interaction in both Newtonian and non-Newtonian mediums. Non-Newtonian 
liquid is resembling the blood modeled by Carreau-Yasuda constitutive equation. The obtained results 
show an expedition of bubble-collapse with a higher jet tip velocity in non-Newtonian medium compared 
to that in the Newtonian surrounding liquid. Moreover, a third phase adjacent to the bubble collapse is 
considered and the penetration depth of the re-entrant jet in the neighboring phase is studied as a measure 
of tissue injury. Our results show that by increasing post shock pressure, the re-entrant jet velocity and 
thus the penetration depth increases. Furthermore, increasing the adjacent phase viscosity results into less 
penetration depth in the tissue..
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1- Introduction
Cavitation bubbles are believed to play an important

role in diverse biomedical applications such as ultrasound-
assisted lipoplasty [1,2], brain tumor surgery [3-5], 
phacoemulsification [6] and shockwave lithotripsy [7-11]. 
Shockwave lithotripsy is a medical treatment which delivers 
many positive and negative pressure pulses to the location 
of kidney stones to break them [12,13]. Passive cavitation 
is cited as a major physical phenomenon observed in both 
urine and the surrounding tissues in shockwave lithotripsy 
procedure [14]. Shockwave propagation within and around 
stone [15] and cavitation erosion [7,16] due to bubble 
collapse near stone are two important mechanisms of stone 
communications. Wang [17] investigated the interaction of 
kidney stones with the shockwave applied in lithotripsy by 
using a coupled finite volume-finite element approach. The 
side effects of shockwave lithotripsy such as tissue damages 
and vascular injuries have been subject of much interest 
by biomedical community [14, 18-21]. Shock induced 
bubble collapse is a vital physical phenomenon embedded 
in shock-wave lithotripsy procedure. This collapse triggers 
the emergence of high speed liquid jet impinging the blood 
vessel and causing tissue damage. Rayleigh [22] was a 
pioneer to mathematically describe the cavity collapse. The 
high pressure regions formed in the collapse process are 
recognized as a major cause of cavitation damage in early 

researches [23]. Experimental observations have provided an 
essential understanding of the underlying physics of shock-
cavity interaction. Formation of high speed re-entrant jet in 
the bubble involution phase was first detected by Kornfeld 
et al. [24] and later  witnessed in the experimental study of 
Benjamin et al. [25] In another remarkable study, Ohl et al. 
[26] investigated the effect of post-shock pressure variations
on the interaction of shock wave with bubbles of various
initial radii. The jetting velocity of the liquid phase was
observed to increase by increasing the initial bubble radius.
Several experimental studies of shock bubble interaction
have been conducted using spark discharge method as a
practical technique for bubble generation [25, 27-29]. Using
this method, Tomita et al. [30] studied bubble collapse near
a solid surface achieving a maximum wall pressure of 12
MPa. In addition, Kodama et al. [31] investigated in vivo
interaction of a shockwave with gaseous bubble attached to
the tissue surface. The tissue surface was resembled by gelatin 
to which a shockwave with a peak pressure of 10.2 ± 0.5 MPa
was applied. The destructive effects of liquid jet caused by
collapsing bubble on gelatin surface were experimentally
observed. More recently, bubble-sphere interaction near
a rigid wall has been captured using high speed imaging
technique [32].

Computational fluid dynamics has been proved to be a 
reliable tool to enhance previous analytical and experimental 
studies. Several computational methodologies and algorithms 
were used to simulate bubble collapse near a wall [33-35]. *Corresponding author’s email: afsharia@ut.ac.ir
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Compressibility of the gas phase was neglected in these 
numerical studies. Popinet et al. [36] used front-tracking 
method to examine the impact of viscosity in Rayleigh 
equation near a wall. However, like potential based methods, 
their method was not capable of capturing the shock. More 
recent investigations were performed in fully compressible 
Eulerian context where shock-interface interaction can be 
visualized. Ball et al. [37] simulated shock bubble interaction 
utilizing two-dimensional second-order accurate method. The 
free-Lagrange computational algorithm is used to simulate 
the collapse of a cylindrical air cavity in water allows the 
air/water interface to be tracked throughout the interaction. 
The gas inside bubble was observed to be heated due to 
internal reflection of shockwave. One of the most thorough 
investigations on shock-bubble interaction was performed 
by Jamaluddin et al. [38] who captured the re-entrant jet 
penetrating the bubble and the resulting shockwave in the 
distal side.  Rheology of the surrounding liquid phase is 
believed to play a vital role in the dynamic behavior of the 
bubble [39-41]. A few numerical studies on bubble collapse 
in non-Newtonian liquid medium have been conducted in 
recent years. Among researches in this area, investigations of 
Walters [42], Lind and Phillips [43] and Rowlatt and Lind 
[44] can be cited. They considered cavitation in viscoelastic
liquid medium using boundary element and spectral element
methods. However, shock-interface interaction in a non-
Newtonian liquid medium has not been studied. The present
study concentrates on interaction of a gaseous bubble with
a shockwave propagating in a liquid medium to simulate
cavitation bubble collapse in blood flow. Shear-thinning
characteristic of the blood is resembled by Carreau-Yasuda
constitutive model. Also, the shock wave strength is altered to
investigate the effects of post-shock pressure on the re-entrant 
jet velocity as a major cause of tissue injury in shockwave
lithotripsy. Apart from, a 3-phase bubble collapse simulation,
the impact of tissue viscosity on penetration depth is studied.

2- Governing Equations and Numerical Scheme
The two-dimensional form of the governing equations

for compressible two phase flow without phase change are 
given below [45]. The three-phase version of the governing 
equations are presented in Appendix A.
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2
E e u= +  and e is specific internal energy. 

Pressure and specific internal energy are related via stiffened 
gas equation of state given below [46].

( 1)P e P       (3)(3)

The constitutive equation for generalized Newtonian 
fluids is defined as

2 ( )D    (4)(4)

where D is the strain rate tensor. The constitutive equation 
of purely viscous non-Newtonian fluid can be expressed by 
Carreau-Yasuda shear thinning model as [47]
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where γ  represents shear rate, n indicates power-law 
index and λ is the relaxation time constant. 0η  corresponds to 
the zero-shear rate and ∞η  represents the infinite-shear rate 
which is negligible in practice.  The dimensionless parameter 
β  with a practical value of  2 describes the transition region 
[47]. The reduced equation can be rewritten as follows.
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Temporal discretization is carried out utilizing the well-
known third-order strong stability preserving Total Variation 
Diminishing (TVD) Runge-Kutta scheme. The discretized 
form of the governing equations used in each stage of the 
Runge-Kutta scheme can be written as below  [48].

1
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where f is the convective flux and S represents non-
convective terms. The convective fluxes are measured based 
on the procedure used in approximate Harten-Lax-van Leer-
Contact (HLLC) Riemann solvers [48]. In this procedure, the 
highest wave speeds in right and left directions are defined as
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where c indicates the speed of sound (Eq. (9)) and 
subscripts R and L represent right and left directions. 
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The parameters in the star region, confined between left 
and right running waves is defined as below
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where *KU  is the vector of intermediate state, defined in 
Eq. (12).
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In Eq. (12),  *S  is the sound speed in the intermediate 
region, approximated as follows. 
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Volume of fluid method [49] is employed to capture 
interfacial evolutions. Second order Monotonic Upwind 
Scheme for Conservation Laws (MUSCL) [50] method is 
used to reconstruct the solution vector including volume 
fraction and conservative variables in computational cell 
edges.

In Fig. 1, the flowchart of solution procedure is shown. 
First, the conservative variables are calculated using Eq. (2). 
Next, wave speeds and fluxes are computed using Eqs. (8) 
and (10). Consecutively, conservative variables and volume 
fraction are updated in the entire domain. Then, the viscous
and interfacial source terms are updated using the new values 
of the conservative variables. At the end of the time step, 
primary variables are updated based on the new values of the 
conservative variables.

3- Results
In order to validate the developed numerical algorithm

multiple test cases including helium-air one-dimensional 
shock tube, collapse of gas bubble in liquid medium, 
underwater explosion, and Rayleigh-Taylor instability are 
investigated and compared with numerical and experimental 
data. After validation, shock-bubble interaction in Carreau-
Yasuda non-Newtonian fluid with blood rheological 
characteristic is simulated and compared to Newtonian fluid. 
In addition, the effects of bubble collapse on the bordering 
tissue is investigated and the impact of tissue viscosity on 
penetration depth is examined.

3- 1-  Benchmark problems
In this section, the results for benchmark problems are

presented and discussed.

3- 1- 1-  Air-helium shock tube
As the first benchmark problem, helium-air one-

dimensional shock tube, previously investigated by So et al. 
[51] is used to perform grid sensitivity analysis.

The initial condition of this problem is considered as
below:
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The computations are done for four different grids with size 
of the cell edges sequentially halved. The variation diagrams 
of pressure and velocity are shown in Fig. 2 along with their 
analytical counterparts. The numerical results are seen to 
be in coincidence with the analytical solution. Moreover, 
calculated error norms are presented in Table 1. Both L1 and 
L2 error norms are seen to be reduced linearly by increasing 
the resolution, and thus convergence of the numerical results 
to the exact solution is proved.
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Fig. 1. Flow chart of the solution procedure.

Table 1. L1 and L2 norm for air-helium shock tube problem.
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Fig. 2. Air-helium shock tube problem at t=0.15 s, solid lines indicate exact solution while dashed lines indicate 
the numerical solution.

Mesh resolution L1 norm L2 norm 
200 0.017 0.004 
400 0.010 0.002 
800 0.005 0.001 
1600 0.002 0.0003 
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3- 1- 2-  Gas bubble collapse in water
This benchmark problem is an appropriate test case to

evaluate the performance of numerical algorithm in large 
density variations across the interface. This problem has 
been investigated both experimentally by Bourne and Field 
[52] and numerically by Terashima and Tryggvason [53] and
Nourgaliev et al. [54]. In this simulation, the cylindrical air
bubble of d = 6 mm is surrounded by water as a compressible
fluid. A square domain of 224 24 mm×  is covered by 400 400×
uniform grid. A shockwave with speed of m681.58

s
u =   

located at x=6.6 mm is delivered toward bubble (Fig. 3). Non-
reflecting boundary condition is assumed for left and right
sides of computational domain while slip wall is imposed on
top and bottom. Also the thermodynamic constants are given
in the following.
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After the incident shock hits the upstream side of the bubble, 
a shockwave is transmitted into the gaseous phase with lower 
acoustic impedance and simultaneously a rarefaction wave 
is reflected into water with higher acoustic impedance (Fig. 
4(a)). The difference in sound speeds of water and air leads to 
the formation of a water penetrating the bubble on its upstream 
side (Fig. 4(b)). As the time passes, the liquid jet penetrates 
further into the bubble (Fig. 4(c)), and the bubble splits to 
two smaller bubbles eventually (Fig. 4(d)). The maximum jet 
velocity of 2914 m / s   is reached immediately after splitting 
the bubble, at 3.69t sµ= . The obtained maximum jet velocity 
is in good agreement with those reported by Nourgaliev et al. 
[54] (2850 m/s) and Bo and Grove [55] (2830 m/s).

Aside from the hydrodynamic evolution of the flow field,
other interesting physical features have been witnessed in the 
experimental study of shock-cavity interaction and often not 

visualized in numerical simulations of this flow field [52]. 
Among these features is the light flashing a few moments after 
bubble breakup and formation of lobes. This luminescence 
is attributed to the abrupt heating the gas trapped inside the 
bubble due to the passage of the violent compressive shock. 
After the liquid jets drives through the bubble forming two 
separate gas pockets, gas temperature inside the pockets 
reaches a very high level enough to emit light. Typical 
duration of this so called sonoluminescence is in the order of 
microseconds in the experimental observations of Bourn and 
Field [52] for a shock of pressure 1.9 GPa hitting a cavity of 
diameter 6 mm.

3- 1- 3-  Underwater explosion
In order to demonstrate the performance of our numerical

algorithm in the presence of shockwave and rarefaction 
wave, simulation of underwater explosion is carried out. 
Underwater explosion was performed by Shyue [49] and Bo 
and Grove [55]. The computational domain is a rectangle 
of ] [0,4 0,3 ×   while the interface between water and air is 
located at 1.5 my = . The initial conditions of both phases are 
given as:

(𝑎𝑎) 𝑡𝑡 = 1 μs (𝑏𝑏) 𝑡𝑡 = 2.2 μs (𝑐𝑐) 𝑡𝑡 = 3.1 μs (𝑑𝑑) 𝑡𝑡 = 3.8 μs 

Fig. 4. Density contours in shock induced collapse of air cavity.

Fig. 3. Initial condition.
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Initially, gas bubble of diameter 0.24 m , pressure 1 GPa  and 
density 31250 kg / m  is situated in liquid phase and centered at 
( )2.1,1.2  m . The domain is covered by a uniform grid consisting 
of 400 300×  computational cells. As it is shown in Fig. 5, at the 
beginning, high pressure in the air bubble leads to formation 
of a non-stationary shock front with outward direction in the 
liquid phase and an inward moving rarefaction wave in the 
compressed gas bubble. Furthermore interaction between 
outward shock wave and the interface reflects a rarefaction 
wave. Reflection of this wave results in changing the shape 
to ellipsoidal bubble and accelerates the bubble upward. As 
shown in Fig. 6 the results are in good agreement with those 
presented by shyue [49].

3- 1- 4-  Rayleigh-Taylor instability
To evaluate the numerical methodology at the presence of

surface tension, gravity and viscous stress Rayleigh-Taylor 
instability is simulated using the developed compressible 
multiphase flow solver and the predicted results are compared 
to those of Terashima and Tryygvason [53].  Computational 
domain of 1 m length and 4 m width is covered by 50 200 ×
cells. The fluid with density 0.225 3/kg m  is located in the 
top while the lighter fluid with the density of 0.1694 3/kg m  
is located at the bottom. Surface tension, viscosity and 
gravity are set equal to  0.1531 N / m , 0.00313 Pa.s  and 29.8 m / s  
respectively. Wall boundary condition is imposed on the top 
and bottom and periodic boundary condition is assumed on 
the left and right sides. Moreover the interface is initially 
perturbed by using of ( )2 0.05cos 2y xπ= + . 

As shown in Figs. 7(a) and 7(b) the heavy fluid falls 
down and the lighter fluid ascends along the vertical edges. 
In addition, in the absence of surface tension the famous 
mushroom shape of surface is formed (Fig. 7(a)). Also the 
spike position versus time diagram for both with surface 
tension and without surface is plotted (Fig. 8) and the results 
are in good agreement with those presented by Terashima and 
Tryygvason [53]. 

𝑡𝑡 = 0.4 ms 𝑡𝑡 = 0.8 ms 𝑡𝑡 = 1.2 ms 
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Fig. 6. Density distribution along the vertical center-line. The green line indicates the 
present numerical results and the red symbols represent Shyue [49] results.

Fig. 5. Density schilleren in underwater explosion.
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3- 2-  Two phase shock bubble interaction
After validating our developed numerical solver through

simulating various benchmark problems, two-phase shock-
bubble interaction is investigated in the present section. The 
simulations are performed in a square domain with its edge 
of size80 mµ , covered by 100 100×  uniform grid. An air 
bubble of 20 mµ  diameter and atmospheric pressure is 
situated at 40x mµ= and surrounded by a non-Newtonian 
fluid with rheological characteristics resembling those of 
blood (Table 2). It is then compared to bubble collapse in 
a Newtonian liquid with a viscosity equal to the zero shear 
rate viscosity ( 0η ) of the non-Newtonian liquid. A shockwave 
initially located at 22x mµ=  , moves toward the bubble with 
speed of 28.13 m/s (Fig. 9). Right and left boundaries are 
considered to be non-reflecting, while slip wall boundary 
condition is imposed on bottom and top edges. 

Initial conditions are given as follows.
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Due to the difference in the acoustic impedance of gas and 
liquid phase, a liquid jet is formed near the upstream side of 
the bubble after incident shockwave hits the bubble. This re-
entrant jet drives through the bubble causing involution and 

eventual collapse of the bubble. Bubble collapse occurring 
in Newtonian and shear-thinning media are shown in Figs. 
10 and 11.

Velocity distribution along the domain centerline is 
demonstrated in Fig. 12 as a measure of jet formation and 
propagation in both Newtonian and non-Newtonian cases. 
As expected, upstream jet speed is higher in non-Newtonian 
case relative to its Newtonian counterpart due to existence 
of the shear-thinning property. Consequently, bubble collapse 
occurs earlier in the non-Newtonian medium (Fig. 13) causing 
an expedition in formation of re-entrant jet.  

Because of the shear thinning characteristic of non-
Newtonian fluid, viscosity decreases with increasing shear 
rate. Therefore the jet velocity is expected to increase 
with lowering viscosity. The re-entrant jet velocity in 

𝑡𝑡 = 0.5 s 𝑡𝑡 = 0.6 s 𝑡𝑡 = 0.7 s 𝑡𝑡 = 0.8 s 𝑡𝑡 = 0.5 s 𝑡𝑡 = 0.6 s 𝑡𝑡 = 0.7 s 𝑡𝑡 = 0.8 s 
(a) with surface tension (b) without surface tension

Fig. 7. Volume fraction contours in Rayleigh-Taylor instability.

Fig. 8. Spike position versus time. 
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non-Newtonian fluid is obtained 339.313 m/s (Fig. 11) 
at t= 0.077 sµ  (Fig. 12) while the re-entrant jet velocity 
in Newtonian fluid is 138.592 m/s at 0.1t sµ= (Fig. 12). 
Consequently, the sharp difference between re-entrant jet 
velocity in Newtonian versus non-Newtonian fluid indicates 
the importance of shear thinning characteristic of blood in 
shockwave lithotripsy under the given operating condition. 

When it comes to shockwave strength it is worthwhile to 
mention that in shockwave lithotripsy treatment of kidney 
stone, lithotripter can produce pressure pulses with the peak 
positive pressure between 30 MPa and 110 MPa. Numerical 
simulations are carried out for several shock strength in this 
range as presented in Table 3.  Increasing shock strength has 
profound impact on re-entrant jet velocity as depicted in Fig. 
14. 

The most side effect likely to occur in shockwave lithotripsy 
is the damage caused by the re-entrant jet formed during 
bubble collapse and the consequent hemorrhage. Thus, the 
importance of re-entrant jet velocity in hemorrhage reduction 
should be perceived. Unfortunately, in most of the numerical 
simulations the effect of Non-Newtonian stress on re-entrant 
jet velocity was neglected and shock bubble interaction was 
simulated in a Newtonian fluid while in present study the 
intense influence of shear thinning behavior of blood versus 
Newtonian is discussed. The re-entrant jet velocity in blood 
for post pressure of 80 MPa is almost 70 m/s more than re-
entrant jet velocity in Newtonian fluid with similar zero shear 

rate.  Thus, taking into account the shear-thinning property 
of the blood flow is an important step to achieve a more 
realistic simulation of the complicated physics underlying the 
shockwave lithotripsy procedure.

3- 3-  Three phase shock bubble interaction
In this section, the computational domain includes a third

phase representing vessel tissue. A square domain of length
120 mµ  is covered by a uniform grid with 200 200×  cells. 
The air bubble of 20 mµ  diameter is located at (40.60) mµ
. A shockwave form 22x mµ=  with post shock pressure of 
80 MPa  which is in the range of the peak positive pressures 
produced by conventional lithotripters. The shockwave 
propagation speed is 28.13 m / s  (Fig. 15). Top and bottom 
boundaries are assumed to be slip walls while non-reflecting 
boundary conditions are imposed on left and right edges. The 
initial condition is given as:

3

3

3

kg(1atm,1.2 ) Air cavity
m

kg(80MPa,1000 )           Post-Shock blood
m

(  (1atm,1000 ))
m

, kgP  

3

   Pre-Shock blood

(1a  kg )  Pre ntm g,1 t000 -shock borderi  issue
m















 (18)(18)

Here, predicted results of bubble collapse near a stationary 
medium with a viscosity of 0.01 Pa.s, representing the tissue 
constituting the blood vessel, are presented. Re-entrant jet 
penetration is a main cause of tissue damage in shockwave 
lithotripsy [18,19]. In Fig. 16, the collapse procedure 
and subsequent re-entrant jet penetrating the tissue are 
demonstrated.     

The forming re-entrant jet affects both the tissue and 
existing kidney stones. Spark generated in the first focal point 
of lithotripter causes the formation of shockwave which are 
then conducted to the second focal point. This focal point is 
set to be situated at the location of kidney stones. In the last 
part of our study, tissue viscosity is altered in a range of 0.001 
Pa.s to 1 Pa.s to investigate the effect of tissue viscosity on 
penetration depth of the re-entrant jet. In Fig. 17, penetration 
depths of re-entrant liquid jets at various tissue viscosities 

 

0.046 Pa. s Zero shear rate limit (𝜂𝜂0) 
0.0035 Pa. s Infinite shear rate limit (𝜂𝜂∞) 
0.3568 Power low index in Carreau-Yasuda model (n) 
3.313 s Relaxation time constant (λ) 

Table 2. Rheological characteristic of blood as a Carreau-Yasuda model [56].

Fig. 9. The schematic of 2-phase shock bubble interaction.
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𝑡𝑡 = 0.05 μs 𝑡𝑡 = 0.069 μs 𝑡𝑡 = 0.073 μs 𝑡𝑡 = 0.1 μs  
(collapse time ) 

Fig. 10. Volume fraction for bubble collapse in Newtonian fluid.

Fig. 11. Volume fraction for bubble collapse in non-Newtonian fluid.

Fig. 12. Velocity profile in domain centerline at t=0.077 μs  for 
Newtonian and non-Newtonian fluid.

Fig. 13. Bubble deformation versus time measured by the 
variation of the distance H between upstream side B and 

downstream side of the interface A.

𝑡𝑡 = 0.05 μs 𝑡𝑡 = 0.069 μs 𝑡𝑡 = 0.073 μs 𝑡𝑡 = 0.077 μs 
(collapse time) 
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Fig. 15. The schematic of 3-phase shock bubble interaction.Fig. 14. Velocity diagram in the center of domain at collapse 
time.

Post shock pressure Shock wave strength 
Ps=40 MPa Ma=1.30 
Ps=60 MPa Ma=1.55 
Ps=80 MPa Ma=1.75 
Ps=110 MPa Ma=1.97 

Table 3. Shockwave speed in different shockwave strength.

𝑡𝑡 = 0 𝑡𝑡 = 0.033 μs 𝑡𝑡 = 0.096 μs 

𝑡𝑡 = 0.18 μs 𝑡𝑡 = 0.36 μs 𝑡𝑡 = 0.58 μs 

Fig. 16. Volume fraction in different time.
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are presented. It is seen that increasing the tissue viscosity 
leads to lower penetration lengths. In Fig. 18, variation of 
penetration depths versus time for different tissue viscosities 
are quantitatively compared.  

4- Conclusion
A compressible multiphase flow algorithm was developed

and evaluated by multiple benchmark problems such as shock 
bubble interaction, underwater explosion and Rayleigh-Taylor 
instability. The performance of computational code in the 
presence of surface tension, gravity, shockwave and viscous 
stresses was examined and compared well with available 

numerical and experimental data. The flow solver then was 
used to study shock-bubble interaction in non-Newtonian 
medium. Our results indicated that the bubble collapse 
occurs sooner in the shear thinning liquid. Additionally, 
the propagation speed of re-entrant jet was shown to be 
considerably higher compared to its Newtonian counterpart 
pronouncing the importance of modeling the non-Newtonian 
behavior of the blood flow. Finally, the computational 
domain was extended to include the adjacent tissue and it was 
concluded that the penetration depth decreases by increasing 
the tissue viscosity.

𝜇𝜇 = 0.001 Pa. s 𝜇𝜇 = 0.01 Pa. s 𝜇𝜇 = 0.1 Pa. s 𝜇𝜇 = 1 Pa. s 

Fig. 17. Volume fraction in different viscosity and the effect of viscosity on penetration depth at t=0.58 μs.
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Fig. 18. Penetration depth versus time in different bordering tissue 
viscosity.
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The mixture variables for three phase flow can be defined as follow:

Appendix A:
The governing two dimensional equations for compressible three phase flow without phase change are:
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