[1] G. Coccia, G. Di Nicola, L. Colla, L. Fedele, M.J.E.C. Scattolini, Management, Adoption of nanofluids in low-enthalpy parabolic trough solar collectors: numerical simulation of the yearly yield, 118 (2016) 306-319.
[2] Z. Said, M. Sabiha, R. Saidur, A. Hepbasli, N. Rahim, S. Mekhilef, T.J.J.o.C.P. Ward, Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant, 92 (2015) 343-353.
[3] V. Drosou, P. Kosmopoulos, A.J.R.E. Papadopoulos, Solar cooling system using concentrating collectors for office buildings: A case study for Greece, 97 (2016) 697-708.
[4] M. Karamali, M.J.R.E. Khodabandeh, A distributed solar collector field temperature profile control and estimation using inlet oil temperature and radiation estimates based on Iterative Extended Kalman Filter, 101 (2017) 144- 155.
[5] Z. Said, R. Saidur, N.J.J.o.C.P. Rahim, Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid, 133 (2016) 518-530.
[6] M. Nemś, J.J.R.E. Kasperski, Experimental investigation of concentrated solar air-heater with internal multiple-fin array, 97 (2016) 722-730.
[7] J.A. Duffie, W.A. Beckman, Solar engineering of thermal processes, John Wiley & Sons, 2013.
[8] J. Ji, J.-P. Lu, T.-T. Chow, W. He, G.J.A.E. Pei, A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation, 84(2) (2007) 222-237.
[9] P.V.J.T.J.o.P.C.C. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion, 111(7) (2007) 2834-2860.
[10] T.P. Otanicar, J.S.J.E.s. Golden, technology, Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies, 43(15) (2009) 6082-6087.
[11] W. Minkowycz, E.M. Sparrow, J.P. Abraham, Nanoparticle heat transfer and fluid flow, CRC press, 2016.
[12] S.K. Das, S.U. Choi, W. Yu, T. Pradeep, Nanofluids: science and technology, John Wiley & Sons, 2007.
[13] A. Beheshti, M. Shanbedi, S.Z.J.J.o.T.A. Heris, Calorimetry, Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid, 118(3) (2014) 1451-1460.
[14] M. Mehrali, E. Sadeghinezhad, S.T. Latibari, S.N. Kazi, M. Mehrali, M.N.B.M. Zubir, H.S.C.J.N.r.l. Metselaar, Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets, 9(1) (2014) 15.
[15] R. Mohebbi, M.J.J.o.t.T.I.o.C.E. Rashidi, Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle, 72 (2017) 70-84.
[16] R. Mohebbi, M. Rashidi, M. Izadi, N.A.C. Sidik, H.W.J.I.J.o.H. Xian, M. Transfer, Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method, 117 (2018) 1291-1303.
[17] M. Izadi, R. Mohebbi, D. Karimi, M.A.J.C.E. Sheremet, P.-P. Intensification, Numerical simulation of natural convection heat transfer inside a┴ shaped cavity filled by a MWCNT-Fe3O4/water hybrid nanofluids using LBM, 125 (2018) 56-66.
[18] T.P. Otanicar, P.E. Phelan, R.S. Prasher, G. Rosengarten, R.A.J.J.o.r. Taylor, s. energy, Nanofluid-based direct absorption solar collector, 2(3) (2010) 033102.
[19] R.A. Taylor, P.E. Phelan, T.P. Otanicar, R. Adrian, R.J.N.r.l. Prasher, Nanofluid optical property characterization: towards efficient direct absorption solar collectors, 6(1) (2011) 225.
[20] R. Mohebbi, M. Nazari, M.J.J.o.A.M. Kayhani, T. Physics, Comparative study of forced convection of a power-law fluid in a channel with a built-in square cylinder, 57(1) (2016) 55-68.
[21] R. Mohebbi, H.J.I.J.o.M.P.C. Heidari, Lattice Boltzmann simulation of fluid flow and heat transfer in a parallel-plate channel with transverse rectangular cavities, 28(03) (2017) 1750042.
[22] R. Mohebbi, H. Lakzayi, N.A.C. Sidik, W.M.A.A.J.I.J.o.H. Japar, M. Transfer, Lattice Boltzmann method based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks, 117 (2018) 425-435.
[23] R. Mohebbi, M. Izadi, A.J.J.P.o.F. Chamkha, Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid, 29(12) (2017) 122009.
[24] Y. Ma, R. Mohebbi, M. Rashidi, Z.J.P.o.F. Yang, Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method, 30(3) (2018) 032001.
[25] Y. Ma, R. Mohebbi, M. Rashidi, Z.J.I.J.o.M.P.C. Yang, Numerical simulation of flow over a square cylinder with upstream and downstream circular bar using lattice Boltzmann method, 29(04) (2018) 1850030.
[26] L. Mu, Q. Zhu, L. Si, Radiative properties of nanofluids and performance of a direct solar absorber using nanofluids, in: ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, American Society of Mechanical Engineers, 2009, pp. 549-553.
[27] M. Karami, M. Akhavan-Bahabadi, S. Delfani, M.J.R. Raisee, S.E. Reviews, Experimental investigation of CuO nanofluid-based Direct Absorption Solar Collector for residential applications, 52 (2015) 793-801.
[28] M. Vakili, S. Hosseinalipour, S. Delfani, S. Khosrojerdi, M.J.S.E. Karami, Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems, 131 (2016) 119-130.
[29] R. Shende, R.J.S.E.M. Sundara, S. Cells, Nitrogen doped hybrid carbon based composite dispersed nanofluids as working fluid for low-temperature direct absorption solar collectors, 140 (2015) 9-16.
[30] Z. Said, R. Saidur, N.J.I.C.i.H. Rahim, M. Transfer, Optical properties of metal oxides based nanofluids, 59 (2014) 46-54.
[31] M. Karami, M.A. Bahabadi, S. Delfani, A.J.S.E.M. Ghozatloo, S. Cells, A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector, 121 (2014) 114-118.
[32] A. Lenert, Y.S.P. Zuniga, E.N. Wang, Nanofluid-based absorbers for high temperature direct solar collectors, in: 2010 14th International Heat Transfer Conference, American Society of Mechanical Engineers, 2010, pp. 499-508.
[33] E.P. Bandarra Filho, O.S.H. Mendoza, C.L.L. Beicker, A. Menezes, D.J.E.C. Wen, Management, Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system, 84 (2014) 261-267.
[34] M. Vakili, S. Hosseinalipour, S. Delfani, S.J.S.E.M. Khosrojerdi, S. Cells, Photothermal properties of graphene nanoplatelets nanofluid for low-temperature direct absorption solar collectors, 152 (2016) 187-191.
[35] S. Delfani, M. Karami, M.J.R.E. Akhavan-Behabadi, Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid, 87 (2016) 754-764.
[36] T.B. Gorji, A.J.S.E. Ranjbar, A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids, 135 (2016) 493-505.
[37] R.C. Shende, S.J.S.E.M. Ramaprabhu, S. Cells, Thermo-optical properties of partially unzipped multiwalled carbon nanotubes dispersed nanofluids for direct absorption solar thermal energy systems, 157 (2016) 117-125.
[38] L. Zhang, J. Liu, G. He, Z. Ye, X. Fang, Z.J.S.E.M. Zhang, S. Cells, Radiative properties of ionic liquid-based nanofluids for medium-to-high-temperature direct absorption solar collectors, 130 (2014) 521-528.
[39] H.K. Gupta, G.D. Agrawal, J.J.S.E. Mathur, An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector, 118 (2015) 390-396.
[40] H.K. Gupta, G.D. Agrawal, J.J.C.S.i.T.E. Mathur, Investigations for effect of Al2O3–H2O nanofluid flow rate on the efficiency of direct absorption solar collector, 5 (2015) 70-78.
[41] J. Liu, Z. Ye, L. Zhang, X. Fang, Z.J.S.E.M. Zhang, S. Cells, A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector, 136 (2015) 177-186.
[42] S. Ladjevardi, A. Asnaghi, P. Izadkhast, A.J.S.E. Kashani, Applicability of graphite nanofluids in direct solar energy absorption, 94 (2013) 327-334.
[43] D.A. Vincely, E.J.E.c. Natarajan, management, Experimental investigation of the solar FPC performance using graphene oxide nanofluid under forced circulation, 117 (2016) 1-11.
[44] P. Nagarajan, J. Subramani, S. Suyambazhahan, R.J.E.P. Sathyamurthy, Nanofluids for solar collector applications: a review, 61 (2014) 2416-2434.
[45] M. Tahani, M. Vakili, S.J.I.C.i.H. Khosrojerdi, M. Transfer, Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid, 76 (2016) 358-365.
[46] S.S. Park, N.J.J.R.e. Kim, A study on the characteristics of carbon nanofluid for heat transfer enhancement of heat pipe, 65 (2014) 123-129.
[47] W. Yu, H.J.J.o.n. Xie, A review on nanofluids: preparation, stability mechanisms, and applications, 2012 (2012) 1.
[48] Z. Said, R. Saidur, M. Sabiha, A. Hepbasli, N.J.J.o.c.p. Rahim, Energy and exergy efficiency of a flat plate solar collector using pH treated Al2O3 nanofluid, 112 (2016) 3915-3926.
[49] B.J.B.B.S.I. EN12975, 2. Thermal solar systems and components solar collectors-Part 2: test methods FS, (2001).