[1] J. Rodríguez-González, A. May-Pat, F. Avilés, A beam specimen to measure the face/core fracture toughness of sandwich materials under a tearing loading mode, International Journal of Mechanical Sciences, 79 (2014) 84-94.
[2] A.A. Saeid, S.L. Donaldson, Experimental and finite element evaluations of debonding in composite sandwich structure with core thickness variations, Advances in Mechanical Engineering, 8(9) (2016) 1687814016667418.
[3] A. Nazari, H. Hosseini-Toudeshky, M. Kabir, Experimental investigations on the sandwich composite beams and panels with elastomeric foam core, Journal of Sandwich Structures & Materials, (2017) 1099636217701093.
[4] A. Nazari, M. Kabir, H. Hosseini Toudeshky, Investigation of elastomeric foam response applied as core for composite sandwich beams through progressive failure of the beams, Journal of Sandwich Structures & Materials, (2017) 1099636217697496.
[5] A. Nazari, M. Kabir, H. Hosseini-Toudeshky, Y. Alizadeh Vaghasloo, S. Najafian, Investigation of progressive failure in the composite sandwich panels with elastomeric foam core under concentrated loading, Journal of Sandwich Structures & Materials, (2017)
1099636217719424.
[6] T. Sinmazcelik, E. Avcu, M.Ö. Bora, O. Çoban, A review: Fibre metal laminates, background, bonding types and applied test methods, Materials & Design, 32(7) (2011) 3671-3685.
[7] F. Mazaheri, H. Hosseini‐Toudeshky, Low‐cycle fatigue delamination initiation and propagation in fibre metal laminates, Fatigue & Fracture of Engineering Materials & Structures, 38(6) (2015) 641-660.
[8] H. Plokker, S. Khan, R. Alderliesten, R. Benedictus, Fatigue crack growth in fibre metal laminates under selective variable‐amplitude loading, Fatigue & Fracture of Engineering Materials & Structures, 32(3) (2009) 233-248.
[9] P.-Y. Chang, J.-M. Yang, Modeling of fatigue crack growth in notched fiber metal laminates, International Journal of Fatigue, 30(12) (2008) 2165-2174.
[10] P.Y. Chang, J.M. Yang, H.-s. Seo, H. Hahn, Off‐axis fatigue cracking behaviour in notched fibre metal laminates, Fatigue & Fracture of Engineering Materials & Structures, 30(12) (2007) 1158-1171.
[11] H.Z. Jishi, R. Umer, W.J. Cantwell, Skin‐core debonding in resin‐infused sandwich structures, Polymer Composites, 37(10) (2016) 2974-2981.
[12] G. Martakos, J. Andreasen, C. Berggreen, O. Thomsen, Experimental investigation of interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device, Journal of Sandwich Structures & Materials, 0(0) (2017) 1099636217695057.
[13] Z.T. Kier, A.M. Waas, Determining Effective Interface Fracture Properties of 3D Fiber Reinforced Foam Core Sandwich Structures, in: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, 2016.
[14] A. Patra, N. Mitra, Interface fracture of sandwich composites: Influence of MWCNT sonicated epoxy resin, Composites Science and Technology, 101 (2014) 94-101.
[15] L.A. Carlsson, G.A. Kardomateas, Structural and failure mechanics of sandwich composites, Springer Science & Business Media, 2011.
[16] F. Mazaheri, H. Hosseini-Toudeshky, Experimental Investigations on Fracture Toughness of Sandwich Beams with Foam Core and FML face sheets, in: 11Th International Conference on Composite Science and Technology, Sharjeh, UAE, 2017.
[17] F. Aviles, L. Carlsson, Analysis of the sandwich DCB specimen for debond characterization, Engineering Fracture Mechanics, 75(2) (2008) 153-168.
[18] Y. Hirose, G. Matsubara, M. Hojo, H. Matsuda, F. Inamura, Evaluation of mode I crack suppression method for foam core sandwich panel with fracture toughness test and analyses, in: Proc. Mechanical Engineering Congress, 2006, pp. 171-172.
[19] V. Rizov, Mixed-mode I/III fracture study of sandwich beams, Cogent Engineering, 2(1) (2015) 993528.
[20] A. Quispitupa, C. Berggreen, L.A. Carlsson, Face/core interface fracture characterization of mixed mode bending sandwich specimens, Fatigue & Fracture of Engineering Materials & Structures, 34(11) (2011) 839-853.
[21] R. Shenoi, S. Clark, H. Allen, Fatigue behaviour of polymer composite sandwich beams, Journal of Composite Materials, 29(18) (1995) 2423-2445.
[22] M. Burman, D. Zenkert, Fatigue of foam core sandwich beams—1: undamaged specimens, International journal of fatigue, 19(7) (1997) 551-561.
[23] N. Kulkarni, H. Mahfuz, S. Jeelani, L.A. Carlsson, Fatigue crack growth and life prediction of foam core sandwich composites under flexural loading, Composite Structures, 59(4) (2003) 499-505.
[24] K. Kanny, H. Mahfuz, Flexural fatigue characteristics of sandwich structures at different loading frequencies, Composite Structures, 67(4) (2005) 403-410.
[25] A. Bezazi, A. El Mahi, J.-M. Berthelot, B. Bezzazi, Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies, Strength of materials, 39(2) (2007) 170-177.
[26] D. Zenkert, M. Burman, Failure mode shifts during constant amplitude fatigue loading of GFRP/foam core sandwich beams, International Journal of Fatigue, 33(2) (2011) 217-222.
[27] F. Yang, Q. Lin, J. Jiang, Experimental study on fatigue failure and damage of sandwich structure with PMI foam core, Fatigue & Fracture of Engineering Materials & Structures, 38(4) (2015) 456-465.
[28] M. Burman, D. Zenkert, Fatigue of foam core sandwich beams. II. Effect of initial damage, International Journal of Fatigue(UK), 19(7) (1997) 563-578.
[29] A. Shipsha, M. Burman, D. Zenkert, Interfacial fatigue crack growth in foam core sandwich structures, Fatigue & fracture of engineering materials & structures, 22(2) (1999) 123-131.
[30] A. Shipsha, M. Burman, D. Zenkert, On mode I fatigue crack growth in foam core materials for sandwich structures, Journal of Sandwich Structures & Materials, 2(2) (2000) 103-116.
[31] A. Quispitupa, C. Berggreen, L.A. Carlsson, Fatigue debond growth in sandwich structures loaded in mixed mode bending (MMB), ECCM13.(2008).
[32] M. Manca, A. Quispitupa, C. Berggreen, L.A. Carlsson, Face/core debond fatigue crack growth characterization using the sandwich mixed mode bending specimen, Composites Part A: Applied Science and Manufacturing, 43(11) (2012) 2120-2127.
[33] G. Tuncol, Modeling the Vacuum Assisted Resin Transfer Molding (VARTM) Process for Fabrication of Fiber/metal Hybrid Laminates, Michigan State University. Mechanical Engineering, 2010.
[34] M. Bauccio, ASM metals reference book, ASM international, 1993.
[35] W.H. Seemann III, Plastic transfer molding techniques for the production of fiber reinforced plastic structures, in, Google Patents, 1990.
[36] W. Seemann, Unitary vacuum bag for forming fiber reinforced composite articles, in, Google Patents, 1994.
[37] B.W. Grimsley, Characterization of the vacuum assisted resin transfer molding process for fabrication of aerospace composites, Virginia Tech, 2005.
[38] E. Baumert, W. Johnson, R. Cano, B. Jensen, E. Weiser, Fatigue damage development in new fibre metal laminates made by the VARTM process, Fatigue & Fracture of Engineering Materials & Structures, 34(4) (2011) 240-249.
[39] D. Lefebvre, B. Ahn, D. Dillard, J. Dillard, The effect of surface treatments on interfacial fatigue crack initiation in aluminum/epoxy bonds, International journal of fracture, 114(2) (2002) 191-202.
[40] Standard Guide for Preparation of Metal Surfaces for Adhesive Bonding, in: Designation D, ASTM, 2001.
[41] A. Bezazi, A. El Mahi, J.-M. Berthelot, B. Bezzazi, Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies, Strength of materials, 39(2) (2007) 170-177.
[42] R.C. Østergaard, B.F. Sørensen, P. Brøndsted, Measurement of interface fracture toughness of sandwich structures under mixed mode loadings, Journal of Sandwich Structures & Materials, 9(5) (2007) 445-466.
[43] J. Sinke, H.d. Boer, P. Middendorf, Testing and Modeling of Failure Behavior in Fiber Metal Laminates, in: 25TH International Congress of the Aeronautical Science, Hamburg, Germany, 2006.
[44] M.S. Prasad, C. Venkatesha, T. Jayaraju, Experimental methods of determining fracture toughness of fiber reinforced polymer composites under various loading conditions, Journal of Minerals and Materials Characterization and Engineering, 10(13) (2011) 1263.
[45] C. Berggreen, B.C. Simonsen, K.K. Borum, Experimental and numerical study of interface crack propagation in foam-cored sandwich beams, Journal of composite materials, 41(4) (2007) 493-520.
[46] M. Shokrieh, M. Heidari-Rarani, M. Ayatollahi, Delamination R-curve as a material property of unidirectional glass/epoxy composites, Materials & Design, 34 (2012) 211-218
[47] Standard Test Method for Mode I Fatigue Delamination Growth Onset of Unidirectional Fiber-Reinforced Polymer Matrix Composites, in: Designation D., ASTM, 1997.
[48] O. Al-Khudairi, H. Hadavinia, A. Waggott, E. Lewis, C. Little, Characterising mode I/mode II fatigue delamination growth in unidirectional fibre reinforced polymer laminates, Materials & Design (1980-2015), 66 (2015) 93-102.
[49] A. El Mahi, M.K. Farooq, S. Sahraoui, A. Bezazi, Modelling the flexural behaviour of sandwich composite materials under cyclic fatigue, Materials & design, 25(3) (2004) 199-208.