[1] G. Vicatos, J. Gryzagoridis, S.J.J.o.E.i.S.A. Wang, A car air-conditioning system based on an absorption refrigeration cycle using energy from exhaust gas of an internal combustion engine. Journal of Energy in Southern Africa, 19(4) (2008) 6-11.
[2] H.A. Daanen, E. Van De Vliert, X.J.A.e. Huang, Driving performance in cold, warm, and thermoneutral environments. Applied Ergonomics, 34(6) (2003) 597-602.
[3] A.J.E. Yılmaz, Transcritical organic Rankine vapor compression refrigeration system for intercity bus air-conditioning using engine exhaust heat. Energy, 82 (2015) 1047-1056.
[4] A.B. Little, S.J.E. Garimella, Comparative assessment of alternative cycles for waste heat recovery and upgrade. Energy, 36(7) (2011) 4492-4504.
[5] H. Wang, R. Peterson, K. Harada, E. Miller, R. Ingram-Goble, L. Fisher, J. Yih, C.J.E. Ward, Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling. Energy, 36(1) (2011) 447-458.
[6] H. Wang, R. Peterson, T.J.E. Herron, Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vapor compression cycle). Energy, 36(8) (2011) 4809-4820.
[7] J. Jeong, Y.T.J.I.j.o.r. Kang, Analysis of a refrigeration cycle driven by refrigerant steam turbine. International Journal of Refrigeration, 27(1) (2004) 33-41.
[8] H. Li, X. Bu, L. Wang, Z. Long, Y.J.E. Lian, buildings, Hydrocarbon working fluids for a Rankine cycle powered vapor compression refrigeration system using low-grade thermal energy. Energy and Buildings, 65 (2013) 167-172.
[9] T. Wang, Y. Zhang, Z. Peng, G.J.R. Shu, s.e. reviews, A review of researches on thermal exhaust heat recovery with Rankine cycle. Renewable and Sustainable Energy Reviews, 15(6) (2011) 2862-2871.
[10] G. Yu, G. Shu, H. Tian, H. Wei, L.J.E. Liu, Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE). Energy, 51 (2013) 281-290.
[11] F. Salek, A.N. Moghaddam, M.M.J.E.C. Naserian, Management, Thermodynamic analysis of diesel engine coupled with ORC and absorption refrigeration cycle. Energy Conversion and Management, 140 (2017) 240-246.
[12] F. Velez, J.J. Segovia, M.C. Martín, G. Antolin, F. Chejne, A.J.F.P.T. Quijano, Comparative study of working fluids for a Rankine cycle operating at low temperature. Fuel Processing Technology, 103 (2012) 71-77.
[13] B.F. Tchanche, G. Lambrinos, A. Frangoudakis, G.J.R. Papadakis, S.E. Reviews, Low-grade heat conversion into power using organic Rankine cycles–A review of various applications. Renewable and Sustainable Energy Reviews, 15(8) (2011) 3963-3979.
[14] G. Shu, L. Liu, H. Tian, H. Wei, G.J.A.E. Yu, Parametric and working fluid analysis of a dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery. Applied Energy, 113 (2014) 1188-1198.
[15] S. Daviran, A. Kasaeian, S. Golzari, O. Mahian, S. Nasirivatan, S.J.A.T.E. Wongwises, A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems.
Applied Thermal Engineering, 110 (2017) 1091-1100.
[16] D. Gewald, K. Siokos, S. Karellas, H.J.R. Spliethoff, S.E. Reviews, Waste heat recovery from a landfill gas-fired power plant. Renewable and Sustainable Energy Reviews, 16(4) (2012) 1779-1789.
[17] H.C. Bayrakçi, A.E.J.I.J.o.E.R. Özgür, Energy and exergy analysis of vapor compression refrigeration system using pure hydrocarbon refrigerants. International Journal of Energy Research, 33(12) (2009) 1070-1075.
[18] J.U. Ahamed, R. Saidur, H.H. Masjuki, M.J.I.j.o.G.e. Sattar, An analysis of energy, exergy, and sustainable development of a vapor compression refrigeration system using hydrocarbon. International Journal of Green Energy, 9(7) (2012) 702-717.
[19] Y. Chang, M. Kim, S.J.I.j.o.r. Ro, Performance and heat transfer characteristics of hydrocarbon refrigerants in a heat pump system. International Journal of Refrigeration, 23(3) (2000) 232-242.
[20] A. Schuster, S. Karellas, E. Kakaras, H.J.A.t.e. Spliethoff, Energetic and economic investigation of Organic Rankine Cycle applications. Applied Thermal Engineering, 29(8-9) (2009) 1809-1817.
[21] Y.A. Cengel, M.A. Boles, Thermodynamics: An Engineering Approach 5th ed., McGraw-Hill, New York, 2006.
[22] J. P.Holman, Heat Transfer, 10th ed., McGraw-Hill, New York, 2010.
[23] Automobile and Mass Transport ASHRAE handbook-HVAC applications, American Society of Heating, Refrigerating and Air Conditioning Engineers, 2007.
[24] R.C. Arora, Refrigeration and air conditioning, PHI Learning Pvt. Ltd., 2012.
[25] R. Mastrullo, A.W. Mauro, R. Revellin, L.J.E.C. Viscito, Management, Modeling and optimization of a shell and louvered fin mini-tubes heat exchanger in an ORC powered by an internal combustion engine. Energy Conversion and Management, 101 (2015) 697-712.
[26] S.S. de la Fuente, D. Roberge, A.R.J.M.P. Greig, Safety and CO2 emissions: Implications of using organic fluids in a ship’s waste heat recovery system. Marine Policy, 75 (2017) 191-203.
[27] B.E. Poling, J.M. Prausnitz, J.P. O’connell, The properties of gases and liquids, Mcgraw-hill New York, 2001.
[28] E.F. Kreith, Moran, MJ, Tsatsaronis, G., Engineering Thermodynamics. The CRC Handbook of Thermal Engineering. Ed. Frank Kreith Boca Raton: CRC Press LLC, 2000, (2000).
[29] I. Dincer, M.A. Rosen, Exergy: energy, environment and sustainable development, Elsevier, New York, 2012.
[30] M. Kanoglu, A. Ayanoglu, A.J.E. Abusoglu, Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system. Energy, 36(7) (2011) 4422-4433.
[31] M. Yari, S.J.A.T.E. Mahmoudi, Utilization of waste heat from GT-MHR for power generation in organic Rankine cycles. Applied Thermal Engineering, 30(4) (2010) 366-375.
[32] http://www.sanden.com/objects/SD6V12_Performance.pdf
[33] https://www.webasto.com/fileadmin/webasto_files/documents/international/hd/catalogues/heavy-duty-air-conditioning-accessories-catalog.pdf.