[1] P.G. Benardos, G.C. Vosniakos, Predicting Surface Roughness in Machining: A Review, Int J Mach Tool Manuf, 43 (2003) 833–844.
[2] M. Chandrasekaran, M. Muralidhar, C. Murali Krishna, U.S. Dixit, Application of soft computing techniques in machining performance prediction and optimization: a literature review, Int J Adv Manuf Technol, 46 (2010) 445-464.
[3] C.X. Feng, X. Wang, Development of empirical models for surface roughness prediction in finish turning, Int J Mach Tool Manuf, 20 (2002) 348–356.
[4] B. Ozcelik, M. Bayramoglu, The statistical modeling of surface roughness in high-speed flat end milling, Int J Mach Tool Manuf, 46 (2006) 1395–1402.
[5] H. Aouici, M.A. Yallese, B. Fnides, K. Chaoui, T. Mabrouki, Modeling and optimization of hard turning of X38CrMoV5-1 steel with CBN tool: machining parameters effects on flank wear and surface roughness, J Mech Sci Technol, 25 (2011) 2843–2851.
[6] S. Bharathi Raja, N. Baskar, Application of Particle Swarm Optimization technique for achieving desired milled surface roughness in minimum machining time, Expert Syst Appl, 39 (2012) 5982–5989.
[7] T. Kivak, Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts, Measurement, 50 (2014) 19–28.
[8] G.M.A. Acayaba, P.M. Escalona, Prediction of surface roughness in low speed turning of AISI316 austenitic stainless steel, CIRP J Manuf Sci Technol, 11 (2015) 62–67.
[9] M. Hanief, M.F. Wani, Modeling and prediction of surface roughness for running-in wear using Gauss-Newton algorithm and ANN, Appl Surf Sci, 357 (2015) 1573–1577.
[10] A. Gok, A new approach to minimization of the surface roughness and cutting force via fuzzy TOPSIS, multi-objective grey design and RSA, Measurement, 70 (2015) 100–109.
[11] M. Gupta, S. Kumar, Investigation of surface roughness and MRR for turning of UD-GFRP using PCA and Taguchi method, Int J Eng Sci Technol, 18 (2015) 70-81.
[12] A. Nejat, H.R. Kaviani, Aerodynamic optimization of a megawatt class horizontal axis wind turbine blade with particle swarm optimization algorithm, Modares Mechanical Engineering, 16(11) (2016) 1-11. (in Persian)
[13] M. Fallah, B. Moetakef Imani, Updating boring bar’s dynamic model using particle swarm optimization, Modares Mechanical Engineering, 16(12) (2016) 479-489. (in Persian)
[14] The Atlas Specialty Metals-Technical Handbook of Stainless Steels, (2016). http://www.atlasmetals.com.au
[15] ISO 4287, Geometrical Product Specifications (GPS) Surface Texture: Profile Method Terms, Definitions and Surface Texture Parameters. International Organization for Standardization, Geneva, 1997.
[16] E. Budak, A. Takeli, Maximizing Chatter Free Material Removal Rate in Milling through Optimal Selection of Axial and Radial Depth of Cut Pairs, CIRP Ann Manu Techn, 54 (2005) 353–356.
[17] M. Moradi, et al., Parameter dependencies in laser hybrid arc welding by design of experiments and by a mass balance, Journal of Laser Applications, 26 (2014) 1-9.
[18] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition, Springer-Verlag, New York, 2009.
[19] H. Zeinoddini-Meymand, B. Vahidi, R.A. Naghizadeh, M. Moghimi, Optimal Surge Arrester Parameter Estimation Using a PSO-Based Multiobjective Approach, IEEE Trans Power Delivery, 28 (2013) 1758-1769.
[20] R. Caponetto, L. Fortuna, S. Fazzino, M.G. Xibilia, Chaotic sequences to improve the performance of evolutionary algorithms, IEEE Trans Evol Comput, 7 (2003) 289-304.
[21] C.M. Lin, M. Gen, Multi-criteria human resource allocation for solving multistage combinatorial optimization problems using multi-objective hybrid genetic algorithm, Expert Syst Appl, 34 (2008) 2480-2490.
[22] N.T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods for Building Simulation Models, Springer-Verlag, New York, 2013.