Document Type : Research Article
Authors
1 Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran
2 Faculty of Mechanical Engineering, University of Isfahan, Isfahan, Iran
Abstract
Highlights
[1] K. Torabi, H. Afshari, Generalized differential quadrature method for vibration analysis of cantilever trapezoidal FG thick plate, Journal of Solid Mechanics, 8(1) (2016) 184-203.
[2] K. Torabi, H. Afshari, Vibration analysis of a cantilevered trapezoidal moderately thick plate with variable thickness, Engineering Solid Mechanics, 5(1) (2017) 71-92.
[3] R. Srinivasan, B. Babu, Flutter analysis of cantilevered quadrilateral plates, Journal of Sound and Vibration, 98(1) (1985) 45-53.
[4] T. Chowdary, P. Sinha, S. Parthan, Finite element flutter analysis of composite skew panels, Computers & structures, 58(3) (1996) 613-620.
[5] M.K. Singha, M. Ganapathi, A parametric study on supersonic flutter behavior of laminated composite skew flat panels, Composite structures, 69(1) (2005) 55-63.
[6] T. Prakash, M. Ganapathi, Supersonic flutter characteristics of functionally graded flat panels including thermal effects, Composite Structures, 72(1) (2006) 10-18.
[7] M. Singha, M. Mandal, Supersonic flutter characteristics of composite cylindrical panels, Composite Structures, 82(2) (2008) 295-301.
[8] S.-Y. Kuo, Flutter of rectangular composite plates with variable fiber pacing, Composite Structures, 93(10) (2011) 2533-2540.
[9] M.-C. Meijer, L. Dala, Zeroth-order flutter prediction for cantilevered plates in supersonic flow, Journal of Fluids and Structures, 57 (2015) 196-205.
[10] A. Sankar, S. Natarajan, T.B. Zineb, M. Ganapathi, Investigation of supersonic flutter of thick doubly curved sandwich panels with CNT reinforced facesheets using higher-order structural theory, Composite Structures, 127 (2015) 340-355.
[11] A. Cunha-Filho, A. de Lima, M. Donadon, L. Leão, Flutter suppression of plates using passive constrained viscoelastic layers, Mechanical Systems and Signal Processing, 79 (2016) 99-111.
[12] H. Navazi, H. Haddadpour, Nonlinear aero-thermoelastic analysis of homogeneous and functionally graded plates in supersonic airflow using coupled models, Composite Structures, 93(10) (2011) 2554-2565.
[13] V.V. Vedeneev, Panel flutter at low supersonic speeds, Journal of fluids and structures, 29 (2012) 79-96.
[14] V.V. Vedeneev, Effect of damping on flutter of simply supported and clamped panels at low supersonic speeds, Journal of Fluids and Structures, 40 (2013) 366-372.
[15] H. Haddadpour, S. Mahmoudkhani, H. Navazi, Supersonic flutter prediction of functionally graded cylindrical shells, Composite Structures, 83(4) (2008) 391-398.
[16] S. Mahmoudkhani, H. Haddadpour, H. Navazi, Supersonic flutter prediction of functionally graded conical shells, Composite Structures, 92(2) (2010) 377- 386.
[17] M. Kouchakzadeh, M. Rasekh, H. Haddadpour, Panel flutter analysis of general laminated composite plates, Composite Structures, 92(12) (2010) 2906-2915.
[18] J. Li, Y. Narita, Analysis and optimal design for supersonic composite laminated plate, Composite Structures, 101 (2013) 35-46.
[19] J. Li, Y. Narita, Multi-objective design for aeroelastic flutter of laminated shallow shells under variable flow angles, Composite Structures, 111 (2014) 530-539.
[20] K. Torabi, H. Afshari, Optimization for flutter boundaries of cantilevered trapezoidal thick plates, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(5) (2017) 1545-1561.
[21] S. Hosseini-Hashemi, M. Fadaee, S.R. Atashipour, A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates, International Journal of Mechanical Sciences, 53(1) (2011) 11-22.
[22] R. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. appl. Mech., 18 (1951) 31.
[23] T. Kaneko, On Timoshenko's correction for shear in vibrating beams, Journal of Physics D: Applied Physics, 8(16) (1975) 1927.
[24] W.-H. Shin, I.-K. Oh, J.-H. Han, I. Lee, Aeroelastic characteristics of cylindrical hybrid composite panels with viscoelastic damping treatments, Journal of Sound and Vibration, 296(1) (2006) 99-116.
[25] C.W. Bert, M. Malik, Differential quadrature method in computational mechanics: a review, Applied Mechanics Reviews, 49 (1996) 1-28.
[26] E. Viola, F. Tornabene, N. Fantuzzi, Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape, Composite Structures, 106 (2013) 815-834.
[27] N. Fantuzzi, F. Tornabene, Strong formulation finite element method for arbitrarily shaped laminated plates– Part I. Theoretical analysis, Adv. Aircr. Spacecr. Sci, 1(2) (2014).
[28] N. Fantuzzi, F. Tornabene, Strong formulation finite element method for arbitrarily shaped laminated plates– Part II. Numerical analysis, Adv. Aircr. Spacecr. Sci, 1(2) (2014).
[29] N. Fantuzzi, F. Tornabene, E. Viola, A. Ferreira, A strong formulation finite element method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape, Meccanica, 49(10) (2014) 2503-2542.
[30] F. Tornabene, N. Fantuzzi, F. Ubertini, E. Viola, Strong formulation finite element method based on differential quadrature: a survey, Applied Mechanics Reviews, 67(2) (2015) 020801.
[31] N. Fantuzzi, F. Tornabene, E. Viola, Four-parameter functionally graded cracked plates of arbitrary shape: a GDQFEM solution for free vibrations, Mechanics of Advanced Materials and Structures, 23(1) (2016) 89- 107.
[32] N. Fantuzzi, M. Bacciocchi, F. Tornabene, E. Viola, A.J. Ferreira, Radial basis functions based on differential quadrature method for the free vibration analysis of laminated composite arbitrarily shaped plates, Composites Part B: Engineering, 78 (2015) 65-78.
[33] N. Fantuzzi, F. Tornabene, Strong Formulation Isogeometric Analysis (SFIGA) for laminated composite arbitrarily shaped plates, Composites Part B: Engineering, 96 (2016) 173-203.
[34] F. Tornabene, N. Fantuzzi, M. Bacciocchi, A.M. Neves, A.J. Ferreira, MLSDQ based on RBFs for the free vibrations of laminated composite doubly-curved shells, Composites Part B: Engineering, 99 (2016) 30-47.
[35] H. Du, M. Lim, R. Lin, Application of generalized differential quadrature method to structural problems, International Journal for Numerical Methods in Engineering, 37(11) (1994) 1881-1896.
[36] J. Gao, W. Liao, Vibration analysis of simply supported beams with enhanced self-sensing active constrained layer damping treatments, Journal of Sound and Vibration, 280(1) (2005) 329-357.
[37] G. Romero, L. Alvarez, E. Alan.., L. Nallim, R. Grossi, Study of a vibrating plate: comparison between experimental (ESPI) and analytical results, Optics and lasers in engineering, 40(1) (2003) 81-90.
Keywords