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ABSTRACT: In this paper, supersonic flutter analysis of cantilevered trapezoidal plates composed of 
two functionally graded face sheets and an isotropic homogeneous core is presented. Using Hamilton’s 
principle, the set of governing equations and external boundary conditions are derived. A transformation 
of coordinates is used to convert the governing equations and boundary conditions from the original 
coordinates into the  new dimensionless computational ones. Generalized differential quadrature method 
(GDQM) is employed as a numerical method and critical aerodynamic pressure and flutter frequencies 
are derived. Convergence, versatility, and accuracy of the presented solution are confirmed using 
numerical and experimental results presented by other authors. The effect of power-law index, thickness 
of the core, total thickness of the plate, aspect ratio and angles of the plate on the flutter boundaries are 
investigated. It is concluded that any attempt to increase the critical aerodynamic pressure leads to a 
decrease in lift force or rise in total weight of the plate.
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1- Introduction
There are extensive usages of trapezoidal plates in many 
structures, especially in aircrafts [1, 2]. As flight velocity of 
an aircraft increases, the aeroelastic self-excited oscillation 
of the wing or tail fin will occur which is known as the 
aeroelastic flutter. Flutter is a critical dynamic problem which 
is very dangerous to the aircraft safety; therefore, numerous 
researchers have studied the flutter characteristics of various 
structures. As the complexities appeared in the governing 
equations, many authors used numerical approaches, e.g. 
Finite element method (FEM) and Galerkin method, and 
presented approximate results for flutter characteristics of 
structures.
Based on the classical plate theory for structural modeling 
and piston theory for aerodynamic pressure, Srinivasan 
and Babu [3] presented FEM model for flutter analysis of 
isotropic quadrilateral plates. They derived both critical 
dynamic pressure and flutter frequency for various boundary 
conditions. Chowdary et al. [4] used a shear deformable 
element to investigate the supersonic flutter of composite 
skew plates. They investigated the effect of skew angle on the 
critical dynamic pressure for different boundary conditions 
and fiber orientation. Using FEM, Singha and Ganapathi [5] 
considered both shear deformation and rotational inertia and 
presented a parametric study on supersonic flutter behavior 
of laminated composite skew plates. They investigated 
the effect of different parameters such as skew angle, 
fiber orientation, and boundary conditions on the critical 
aerodynamic pressure. Prakash and Ganapathi [6] used FEM 
and studied the influence of thermal environment on the 
supersonic flutter behavior of flat panels made of functionally 

graded materials. The aerodynamic force was evaluated by 
considering the first-order high Mach number approximation 
to linear potential flow theory. Using isoparametric finite 
element formulation, Singha and Mandal [7] investigated 
supersonic panel flutter behavior of laminated composite 
plates and cylindrical panels. They studied the effects of 
curvature, laminate stacking sequence, air flow direction and 
boundary condition on the supersonic flutter characteristics. 
Using FEM and quasi-steady aerodynamic theory, the 
effect of variable fiber spacing on the supersonic flutter of 
rectangular composite plates has been investigated by Kuo 
[8]. He showed that flutter boundaries may be increased or 
decreased due to variable fiber spacing. Meijer and Dala [9] 
used a finite element structural model based on Mindlin-
Reissner theory for the plate and local piston theory for 
aerodynamic pressure in supersonic flow and developed a 
zeroth-order flutter prediction for cantilevered plates. They 
validated their method against published experimental 
data.  Based on higher-order structural theory and using 
QUAD-8 shear flexible shell element, Sankar et al. [10] 
presented the supersonic flutter characteristics of doubly 
curved sandwich shell panels with carbon nanotube (CNT) 
reinforced face sheets. They investigated the influence of the 
volume fraction of the CNT, core-to-face sheet thickness, 
the shell thickness and the aspect ratio, radius-to-thickness 
ratio, and temperature on the flutter boundaries. Using FEM, 
Cunha-Filho et al. [11] presented a numerical study on the 
flutter analysis of a three-layer sandwich rectangular plate 
and investigated the possibility of reducing the effects of 
the supersonic aeroelastic instability of plates by applying 
passive constrained viscoelastic layers.
Using Galerkin method, Navazi and Haddadpour [12] studied 
the nonlinear aeroelastic behavior of homogeneous and Corresponding author, E-mail: k.torabi@eng.ui.ac.ir
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functionally graded two dimensional and three-dimensional 
flat plates under supersonic airflow. They used the von-
Karman nonlinear strains, piston theory and a combination 
of simple rule of mixtures and the Mori-Tanaka scheme to 
model the structure, aerodynamic and material, respectively. 
They showed that under real flight conditions and using 
coupled model, the aerodynamic heating is very severe and 
the type of instability is divergent. Vedeneev [13, 14] used 
Galerkin method and focused on the single mode panel 
flutter analysis which happens at low supersonic speeds. 
He presented a comprehensive numerical solution of single-
mode flutter [13]. As he used Euler-Bernoulli beam theory, 
results were applicable to the panels of high aspect ratios. 
He also investigated the effect of damping on single mode 
panel flutter of simply supported and clamped panels at low 
supersonic speeds [14]. He showed that for typical structural, 
damping levels single-mode flutter is not always avoidable. 
Moreover, for some conditions damping level necessary to 
suppress flutter is too high and cannot be achieved by the 
structure itself. Based on the classical Love’s shell theory 
and the first-order piston theory for aerodynamic loading 
and using Galerkin method, Haddadpour et al. [15] and 
Mahmoudkhani et al. [16] considered temperature-dependent 
properties and studied supersonic aero-thermoelastic 
analysis of a functionally graded cylindrical and truncated 
conical shells, respectively. For the cylindrical shell they 
investigated the effects of power-law index, internal pressure 
and temperature rise on the flutter boundaries and for the 
conical one, they predicted the flutter boundaries for different 
values of semi-vertex cone angles, different temperature 
distributions, and different volume fraction indices. Using 
Galerkin method, Kouchakzadeh et al. [17] investigated the 
problem of nonlinear aeroelasticity of a general laminated 
composite plate in supersonic air. They hired the classical 
plate theory along with the von-Karman nonlinear strains for 
structural modeling and linear piston theory for aerodynamic 
modeling and studied the effects of in-plane force, static 
pressure differential, fiber orientation and aerodynamic 
damping on the nonlinear aeroelastic behavior of the plate 
and showed that the fiber orientation has a significant effect 
on dynamic behavior of the plate.
Li and Nartia [18, 19] focused on the optimization of structure 
to increase the critical aerodynamic pressure; They used a 
layerwise optimization approach and obtained the optimal 
fiber orientation angles of the supersonic laminated plate to 
obtain the maximum critical aerodynamic pressure [18]. They 
showed that through the optimization process, one can largely 
raise the critical aerodynamic pressure and significantly 
improve the stability of supersonic plates. In another work, 
they presented a multi-objective optimal design of aeroelastic 
laminated doubly curved shallow shells modeled based on the 
first-order shear deformation theory [19]. They considered 
the fiber orientations in the layers of the symmetrically angle-
ply shells as the design variable and the maximization of the 
weighted sum of the critical aerodynamic pressures under 
different probability density functions of flow orientations as 
the design objective. 
Recently, Torabi and Afshari [20] have employed particle 
swarm optimization (PSO) and found the optimum geometric 
shape of a cantilevered trapezoidal homogeneous plate with a 
non-uniform thickness which has the maximum value of the 
critical aerodynamic pressure. They did not investigate the 

effect of geometrical parameters of the plates on the flutter 
boundaries and focused on the optimization procedure. In 
this paper, authors expand this work and present a parametric 
study on the flutter analysis of a cantilevered trapezoidal 
sandwich plate made of functionally graded materials. The 
plate is composed of two functionally graded face sheets 
and an isotropic homogeneous core. The set of governing 
equations are obtained and are solved numerically using 
GDQM and the effect of power-law index, thickness of the 
core, total thickness of the plate, aspect ratio and angles 
of the plate on the flutter boundaries are investigated. It is 
worth mentioning that in spite of having wide industrial 
applications, the cantilevered plate problem is one of the 
most difficult boundary conditions to be solved. In fact, it is 
because of the complexities which appear at three free edges.

2- Governing Equations
As depicted in Fig. 1, a cantilevered trapezoidal plate clamped 
at y=0 and free at other edges is considered. It is assumed 
that the plate is exposed to a compressible supersonic flow of 
density ρ∞ and velocity U∞ in x direction.

The plate is considered to be composed of a homogeneous 
metal core and two FG face sheets which their properties vary 
from interior ceramic-rich layers to interior metal-rich ones 
according to a power law function. Thus, volume fraction of 
the metal (Vm) and ceramic (Vc) can be considered as

Fig. 1. A trapezoidal functionally graded sandwich plate in a 
compressible supersonic flow.
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where q is the power law index. Any properties of the plate 
(P) can be presented as

( ) ( )c m c mP z P P P V= + − (2)

in which subscripts "c" and "m" indicate corresponding 
properties in ceramic and metal, respectively. It should be 
noticed that usually in FG-structures Poisson’s ratio (ν) is 
considered to be constant.
By introducing dimensionless spatial parameter as Z=2z/h, 
Eq. (1) can be written as

( )

( ) ( )

1 1
1

1
1 1
1

1

q

m

q

c m

Z Z

V Z Z
Z Z

V Z V Z

κ
κ

κ κ

κ
κ

 +  − ≤ ≤ −  − = − ≤ ≤
 −  ≤ ≤ − 

= −

(3)

where κ=hm /h is the dimensionless thickness of the core.
Unless mentioned otherwise, in this paper numerical results 
are presented for a functionally graded sandwich plate 
composed of aluminum (Al) as metal and alumina (Al2O3) as 
ceramic. Mechanical properties of these materials are given 
in Table 1.

For κ=0.5 and various values of power-law index, the variation 
of the volume fraction of ceramic is illustrated in Fig. 2. This  
figure indicates that as the value of the q increases or value 
of κ decreases, the volume fraction of the ceramic grows. 
Thus, according to Table 1, both stiffness and mass of the 
plate increase as the value of the q increases or value of κ 
decreases.
According to the Reissner-Mindlin plate theory, the 
displacement field is considered as follows [22]:
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where uz, vz and wz show the components of displacement 
along x, y and z directions, respectively; u, v and w indicate 
corresponding components of displacement on the middle 

surface (z=0) and ψx and ψy are rotations about y and x axes, 
respectively.
For symmetric sandwich plates there is no coupling between 
in-plane and transverse vibrations; consequently, by 
neglecting in-plane deformations of the plate at the middle 
surface, Eq. (4) can be written as
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Components of strain in plate can be stated as [2]
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Furthermore, by neglecting σz in comparison with σx and σy 
in Hook’s laws, the components of stress can be stated as [2]
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in which E and Gs are the modulus of elasticity and shear 
modulus, respectively and k is shear correction factor which 
is calculated in this paper using the following relation [23]:

Material
Properties

E (GPa) ρ (kg/m3) υ
Aluminum (Al) 70 2702 0.3
Alumina (Al2O3) 380 3800 0.3

Table 1. Mechanical properties of materials [21].

Fig. 2. Variation of the volume fraction of ceramic through the 
thickness.
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( ) ( )5 5 6 5 .k υ υ= + + (8)
According to Hamilton’s principle, considering δ as variation 
operator, t as time and [t1 ,t2] as the desired time interval, the 
set of governing equations and boundary conditions can be 
derived using the following relation:
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where T, U and Wf are kinetic energy, strain energy and work 
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calculated as
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in which ρ is the density of the material, V is the volume of 
the plate, S is an area of the plate at the middle surface and 
f is external force per unit area. By inserting  Eqs. (5), (6), 
(10-a) to (10-c) into Eq. (9), the set of governing equations 
can be derived as
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Using Eqs. (7) and (12), one can write
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in which υ1=(1-υ)/2 and shear and bending rigidities are 
defined as
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Also, external boundary conditions can be stated as follows 
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where normal and tangential components of bending moment 
and normal shear forced are defined as [2]

( ) ( )

2 2

2 2

2 ,

,

,
cos ,
sin .

nn xx x yy y xy x y

ns yy xx x y xy x y

n xz x yz y

x

y

M M n M n M n n

M M M n n M n n

Q Q n Q n
n
n

θ
θ

= + +

= − + −

= +

=
=

(16)

For the clamped edge (y=0), boundary conditions can be 
stated as [2]

0, 0, 0,x yw ψ ψ= = = (17)

and for the free ones, following boundary conditions should 
be considered [2]:
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For flutter analysis, the external force per unit area is created 
by the aerodynamic load and is expressed by the supersonic 
piston theory as [6]
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where M∞ is Mach number.
As the aerodynamic damping term in Eq. (19) always 
stabilizes the flutter boundaries [24], to study the aeroelastic 
characteristics of the supersonic plate, the aerodynamic load 
without the aerodynamic damping is used to derive the flutter 
equation of the supersonic plate. Thus, inserting  Eqs. (13) 
and (19) into the Eqs. (11), (16) and (18), the set of governing 
equations can be stated as
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and boundary conditions at the free edges can be written as
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As Fig. 3 shows, the physical domain can be mapped into the 
computational domain using following transformation [2]:
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Fig. 3. Physical and computational domains [2]. 
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where

1 , tan , .
sec

aH F G
G b

ζ α ϕ
ϕ α η

= = − =
−

(29)

Considering ω as the eigen value and using the method of 
separation of variables as

( )
( )
( )

( )
( )
( )

, , ,
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(30)

the set of governing equations (21) can be rewritten as
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(31)

where following dimensionless parameters are defined:
24 2 2 3

2 *

2
, , ,

1
c s

c c

Mhb U ah
b D D M

ρ ω ργ λ ξ ∞

∞

∞= = =
−

(32)

in which Us is the velocity of sound. Also, dimensionless 
form of boundary conditions at the free edges can be stated as
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 Ψ + Φ + + + = 

(33)

and at the clamped edge one can write:

0, 0, 0.WΨ = Φ = = (34)

It should be noted that λ and ξ* appeared in Eq. (32) are non-
dimensional eigen value and non-dimensional aerodynamic 
pressure, respectively. These definitions are used by many 
authors and also are used here in this paper to validate 
the obtained results. Unfortunately, these definitions are 
not suitable to  investigate  the effects of dimensionless 
thickness or aspect ratio; because they contain a, b and h, 
simultaneously. Thus, in these  cases following dimensionless 
definitions will be used:

( )2 2 2 22
2

2

12 1
, ,

1
c s

c c

b MU
E E M

υ ρ ω ρ
∞

∞

∞
−

Λ = Γ =
−

(35)

which can be related to those in Eq. (32) as Λ=γλ and             
Γ=γ3ξ*/[12(1-ν2)φ3].

3- Differential Quadrature Method
The values of function f(ζ,η) at N×M pre-selected grid of 
points can be considered as

( ) 1,2,...,
, .

1, 2,...,ij i j

i N
f f

j M
ζ η

=
=

= (36)

According to the differential quadrature rules, all derivatives 
of the function can be approximated by means of weighted 
linear sum of the function values at the pre-selected grid of 
points as

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( ) ( )

1, ,

2

2
1, ,

1, ,

2

2
1, ,

2

1 1, ,

,

,

,

,

,

i j

i j

i j

i j

i j

N

in nj
n

N

in nj
n

M

jm im
m

M

jm im
m

N M

in jm nm
n m

f A f

f B f

f A f

f B f

f A A f

ζ

ζ η ζ η

ζ

ζ η ζ η

η

ζ η ζ η

η

ζ η ζ η

ζ η

ζ ζ η

ζ

ζ

η

η

ζ η

==

==

==

==

= =Θ =

∂
=

∂

∂
=

∂

∂
=

∂

∂
=

∂

∂
=

∂ ∂

∑

∑

∑

∑

∑ ∑

(37)

where A(ζ ), B(ζ ), A(η) and B(η) are the weighting coefficients 
associated with the first and second order derivatives in ζ and 
η directions, respectively. These matrices for the first-order 
derivatives are given as [25]
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and of second-order derivatives are extracted from the 
following relations:

( ) ( ) ( ) ( ) ( ) ( ), .B A A B A Aζ ζ ζ η η η= = (39)

Eq. (37) can be written in the following matrix form:
( ) [ ] ( ) [ ]

[ ] ( ) [ ] ( )

( ) [ ] ( )
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, ,

,

T T
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     =     

(40)

in which superscript T indicates transpose operator.
For a matrix [ f ]N×M , an equivalent column vector { f }NM×1 
can be defined as [2]

( ), 1 .v ijf f v j N i= = − + (41)

Using this technique, a multiple of three matrices as                          
[a][ f ][b] can be replaced by ([b]T⊗[a]){ f } ; in which ⊗ 
indicates the Kronecker product [2]. Therefore, Eq. (40) can 
be written as
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(42)

where Iζ and Iη indicate the identity matrix of size N and M, 
respectively.
In addition to the number of grid points, distribution of them 
affects the convergence of the solution. A well-accepted set of 
the grid points is the Gauss–Lobatto–Chebyshev points given 
for interval [0,1] as
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(43)

4- DQ Analogue
Using DQ rules, the set of governing differential equations 
(31) is transformed to the following form:

[ ]{ } [ ]{ }2 ,K u M uλ= (44)

where [K] and [M] are stiffness and mass matrices which are 
presented in detail in Appendix A. Also, in a similar manner 
boundary conditions (33) and (34) can be written using DQ 
rules as

[ ]{ } { }0 ,T u = (45)

in which components of the matrix [T] are presented in 
Appendix B.
In two dimensional problems, three kinds of points can be 
considered: interior points, boundary points, and corner 
points. As each corner point belongs to two adjacent edges, 
in this paper the relations of both corresponding edges 
are considered for each corner point. Implementation of 
conditions at corner points is a very well-known issue in 
DQM and the wrong implementation leads to numerical 
instabilities of the solution. Interested readers can find more 
details in Refs. [26-34].
Let us divide the grid points as two sets: boundary points 
which are located at the four edges of the plate and domain 
ones which are other internal points. By neglecting satisfying 
the Eq. (44) at the boundary points, this equation can be 
written as [35]

{ } { }2 ,K u M uλ   =    (46)

where bar sign implies the corresponding non-square matrix. 
Eqs. (45) and (46) may be rearranged and partitioned in order 
to separate the boundary (b) and domain (d) points as follows:
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[ ] { } [ ] { } { }0 .
d bd b

T u T u+ = (47b)

Inserting  Eq. (47-b) into Eq. (47-a) leads to the following 
eigen value equation:
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Using Eq. (48) the eigen values and corresponding modes can 
be obtained. It should be noted that obtained eigen values are 
the complex numbers. Thus, non-dimensional frequency (Ω 
or χ) and corresponding dimensionless damping ratio (ζ*) are 
defined as [36]:
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in which Re(λ), Im(λ) and |λ| indicate real part, imaginary part 
and the absolute value of complex number λ, respectively.
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5- Numerical results and discussion
In this section, numerical results are presented for the 
developed solution in the previous sections. First, the 
convergence of the presented solution should be examined. 
For this purpose, consider a functionally graded sandwich 
plate of κ=1/3, q=2, α=20o, β=10o, φ=0.75 and γ=0.05 
imposed on a supersonic compressible flow of ξ*=10. The 
effect of the number of grid points (N=M) on the value of 
the first six frequencies is presented in Table 2. As shown in 
this table, 15 grid points at each direction are adequate for the 
convergence of the first six frequencies and this number of 
points will be used for all of the following examples.
In order to check the accuracy of the proposed numerical 
solution, a homogenous trapezoidal plate of E=68.2 GPa, 
υ=0.35, ρ=2860 kg/m3, a=8.8 cm, b=10.35 cm, h=0.98 mm, 
α=27o and β=-13o is considered. Table 3 shows the value 
of the first six frequencies and corresponding experimental 
ones reported by Romero et al. [37]. Except for the fifth 
mode which has a considerable difference, Table 3 shows an 
excellent agreement between the presented numerical solution 
and experimental tests. For more assurance, corresponding 
modes are depicted and are compared with experimental ones 
in Figs. 4(a-f). These figures confirm high  accuracy of the 
presented solution.
In order to check the effect of aerodynamic pressure and also 
validate the proposed solution for the flutter analysis, two cases 
of a homogeneous plate of φ=1 and γ=0.01 are considered. For 
a rectangular plate, Figs. 5(a-b) show the variation of first two 
dimensionless frequencies and corresponding damping ratios 
versus variation of non-dimensional aerodynamic pressure. 
As these figures show the increase in aerodynamic pressure 

leads to an increase in the first frequency and a decrease in the 
second one. At ξ*=61.25, these two frequencies become equal 
to Ω=6.69 and the corresponding value of damping ratio 
of the second mode drops to the negative values. In fact, at 
this point, the aeroelastic self-excited oscillation of the plate 
occurs which is known as the aeroelastic flutter. The value 
of the aerodynamic pressure at this point is called critical 
aerodynamic pressure and the corresponding frequency is 
called the flutter frequency.
Similar diagrams are depicted in Figs. 6(a-b) for a skew plate 
(α=β=30o). As shown in these figures, the non-dimensional 
critical aerodynamic pressure is ξ*=37.5 and non-dimensional 
flutter frequency is Ω=8.56. It is clearly seen from Figs. 5(a) 
to 6(b) that the flutter characteristics obtained by calculating 
the natural frequencies are the same as those obtained by 
calculating the damping ratios. It should be noted that it 
cannot be concluded if the aerodynamic damping term in Eq. 
(19) be considered.
In Table 4, non-dimensional critical aerodynamic pressure 
and non-dimensional flutter frequencies are listed and are 
compared with those presented by other authors based on 
FEM. This comparison confirms the high accuracy of the 
presented solution. It is worth mentioning that in comparison 
with GDQM, the most advantage of FEM is its strength 
in solve problems with complicated geometries. But, for 
problems with simple geometries which can be solved by 
both methods, GDQM has less computational efforts.
The convergence and versatility of the proposed solution were 
confirmed in previous examples. Thus, the effect of various 
parameters on the flutter boundaries can be investigated. In 
order to investigate the effect of power law index on flutter 

Number of grid points (N=M)
Mode number

1 2 3 4 5 6
5 4.994123 15.73193 25.54740 66.21993 70.35063 141.7747
6 5.582063 21.20373 21.20373 45.20371 57.70620 64.73268
7 5.607089 12.20261 23.79906 37.76262 59.66677 66.75532
8 5.539882 24.70848 24.70848 59.66378 61.05909 67.76939
9 5.548298 13.20464 23.98945 39.77785 60.75835 67.44721
10 5.513786 13.46191 24.06631 39.89909 60.48502 67.41541
11 5.523723 13.25988 24.03058 40.04180 60.40756 67.18627
12 5.509811 13.29344 24.02721 39.87433 60.41811 67.29120
13 5.516232 13.22507 24.01777 39.91001 60.39515 67.22431
14 5.509912 13.23108 24.01283 39.83484 60.39309 67.23351
15 5.513123 13.20868 24.01093 39.84369 60.38694 67.20047
16 5.510241 13.21109 24.00899 39.81622 60.38494 67.21137
17 5.511544 13.20322 24.00892 39.81825 60.38341 67.20259
18 5.510285 13.20533 24.00824 39.80923 60.38285 67.20302

Table 2. Convergence of the presented solution.

Mode number
Natural frequency (Hz)

1 2 3 4 5 6
Presented 153.1031 579.5874 676.4468 1492.844 1735.459 2291.54

Experimental [37] 153 594 717 1571 1970 2320
Difference (%) 0.067353 -2.42637 -5.65595 -4.97491 -11.9056 -1.22671

Table 3. Comparison of the presented solution with experimental results [37].
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(a) Mode 1

(b) Mode 2

(c) Mode 3

(d) Mode 4
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(e) Mode 5

(f) Mode 6
Fig. 4. Comparison between presented modes and experimental results [37]. 

(a) (b)
Fig. 5. Variation of the first two dimensionless frequencies (a) and corresponding damping ratios (b) of a rectangular plate versus 

variation of non-dimensional aerodynamic pressure. 

α=β

ξ*
cr Ωcr

present
FEM

present
FEM

Chowdary et al. [4] Singha and Ganapathi [5] Chowdary et al. [4] Singha and Ganapathi [5]
0 61.25 59.51 57.89 6.69 6.48 -

30o 37.5 41.12 40.04 8.56 8.13 -

Table 4. Non-dimensional critical aerodynamic pressure and non-dimensional flutter frequencies for rectangular and skew plates.
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plate more stable. However, Table 1 shows that density of 
Al2O3 is higher  than Al and these attempts make the plate 
heavier which is not the desired item in aircrafts.
The effect of material properties on the flutter boundaries 
was investigated in Figs. 7 and 8 and in what follows, the 
effects of geometrical parameters on the flutter boundaries of 
functionally graded sandwich plates are investigated.
Angles of leading and trailing edges of wing and fin tail 
have a significant effect on dynamic and aerodynamic 
characteristics of aircrafts. In order to investigate the effect 
of angles of leading edge (α), consider a functionally 
graded sandwich plate of κ=0.2, q=3, β=10o, φ=0.5 and 
γ=0.02. For the various values of α, a variation of the first 
six dimensionless frequencies is illustrated versus non-
dimensional aerodynamic pressure in Figs. 9(a-d). These 
figures indicate that as the value of α increases, a rise can be 
seen in the values of the non-dimensional critical aerodynamic 
pressure and makes the plate more stable.
In practice, unlike the angle of leading edge (α) the value 
of the angle of trailing edge (β) can be either positive or 
negative. In order to investigate the effect of this parameter, a 
functionally graded sandwich plate of κ=0.5, q=0.25, α=30o, 
φ=0.8 and γ=0.015 is considered.

boundaries consider a functionally graded sandwich plate 
of κ=0.25, α=25o, β=-5o, φ=0.75 and γ=0.01. In Figs. 7(a-
d) the variation of the first six dimensionless frequencies 
versus non-dimensional aerodynamic pressure is depicted for 
various values of power-law index. As these figures show, an 
increase in the value of q increases both critical aerodynamic 
pressure and flutter frequency. It is worth mentioning that as 
Fig. 2 shows, the increment in the value of the q increases the 
volume fraction of the ceramic which increases both stiffness 
and mass of the plate.
A functionally graded sandwich plate of q=1, α=20o, β=5o, 
φ=0.5 and γ=0.01 is considered for the study variation of 
flutter boundaries of functionally graded sandwich plates by 
the variation of the thickness of the core (κ). Variation of the 
first six dimensionless frequencies versus non-dimensional 
aerodynamic pressure is depicted in Figs. 8(a-d) for the 
various values of κ. These figures show that increment in the 
value of κ decreases both critical aerodynamic pressure and 
flutter frequency. It should be noticed that as Fig. 2 shows, 
increase in the value of the κ decreases both stiffness and 
mass of the plate.
Figs. 7 and 8 show that increment in the value of volume 
fraction of the ceramic (increase in q or decrease in κ), makes 

(a) (b)
Fig. 6. Variation of the first two dimensionless frequencies (a) and corresponding damping ratios (b) of a skew plate versus variation 

of non-dimensional aerodynamic pressure. 

(a) q=0 (b) q=0.5
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(c) q=1 (d) q=2
Fig. 7. Variation of the first six dimensionless frequencies for a functionally graded sandwich plate versus variation of non-

dimensional aerodynamic pressure for various values of power-law index. 

(a) κ=0 (b) κ=0.5

(c) κ=0.75 (d) κ=0.95
Fig. 8. Variation of the first six dimensionless frequencies for a functionally graded sandwich plate versus variation of non-

dimensional aerodynamic pressure for various values of κ. 
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A functionally graded sandwich plate of κ=0.3, q=4, α=30o, 
β=10o, γ=0.01 is considered to study the effect of aspect 
ratio on flutter boundaries. In Figs. 12(a-d) a variation of the 
first six dimensionless frequencies versus non-dimensional 
aerodynamic pressure is illustrated for various values of the 

Figs. 10(a-g) show a variation of first six dimensionless 
frequencies versus non-dimensional aerodynamic pressure 
for various values of β. These figures show that critical 
aerodynamic pressure and flutter frequency of the plates 
with negative values of β are greater than those with positive 
values of β. It can be seen that as the value of the angle of 
trailing edge changes from negative values to positive ones, 
critical aerodynamic pressure decrease and the plate becomes 
more unstable.
It is expected that aerodynamic characteristics of the plate 
to be affected by its thickness and aspect ratio. As said, in 
order to investigate the effect of non-dimensional thickness 
and aspect ratio on the flutter boundaries, it is better to use the 
dimensionless forms of aerodynamic pressure and frequency 
presented in Eq. (35). Consider a functionally graded 
sandwich plate of κ=0.2, q=7, α=15o, β=-5o and φ=0.4. 
For various values of dimensionless thickness, Figs. 11(a-d) 
show a variation of first six dimensionless frequencies versus 
non-dimensional aerodynamic pressure. As these figures 
show, the increment in the thickness of the plate increases 
critical aerodynamic pressure. In other words, an increase 
in thickness makes plate more stable; but it makes the plate 
heavier, as well.

(a) α=10o (b) α=15o

(c) α=20o (d) α=30o

Fig. 9. Variation of the first six dimensionless frequencies for a functionally graded plate versus variation of non-dimensional 
aerodynamic pressure for various values of angles of leading edge (α). 

(a) β=-15o
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increase the stability of the plate, it is better to decrease its 
width; but this attempt leads to the decreased area of the plate 
which reduces the total lift force of the aircraft.

aspect ratio. As depicted in these figures, the increment in 
aspect ratio decreases both critical aerodynamic pressure. In 
other words, for plates with a bigger width, it is more likely 
for flutter to happen. It can be concluded that in order to 

(b) β=-10o (c) β=-5o

(d) β=0o (e) β=5o

(f) β=10o (g) β=15o

Fig. 10. Variation of the first six dimensionless frequencies for a functionally graded sandwich plate versus variation of non-
dimensional aerodynamic pressure for various values of angles of trailing edge (β). 
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(a) γ=0.01 (b) γ=0.0125

(c) γ=0.015 (d) γ=0.0175
Fig. 11. Variation of the first six dimensionless frequencies for a functionally graded sandwich plate versus variation of non-

dimensional aerodynamic pressure for various values of dimensionless thickness. 

(a) φ=0.4 (b) φ=0.5
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where [0] indicates null matrix of size MN*MN and following 
matrices are defined:
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6- Conclusion
Using GDQM numerical solution was presented for the 
supersonic flutter analysis of cantilevered trapezoidal 
functionally graded sandwich plates. The first shear 
deformation plate theory and supersonic piston theory were 
used to model the structure and aerodynamic pressure, 
respectively. Numerical results revealed that in order to 
increase critical aerodynamic pressure and stability of the 
plate, the following attempts can be made:
1.	 Increasing the value of the angle of leading edge (α) as 

far as  possible.
2.	 If possible, using negative values for the angle of leading 

edge (β) instead of positive ones.
3.	 Increasing angle of leading edge (β) if this angle is 

negative and decreasing this angle if this angle is positive.
4.	 Decreasing the width of the plate as far as  possible.

It is worth mentioning that all of the above-mentioned 
attempts lead to a decrease in the total area of the plate 
and therefore will decrease the lift force, which is not 
desired in aircrafts.

5.	 Increasing the thickness of the plate as far as   possible.
6.	 Increase in volume fraction of a ceramic part of the plate 

as far as  possible. It can be achieved by increasing power 
law index (q) or decreasing thickness of the core (κ). 

It should be noticed that the two last attempts lead to a rise 
in the total weight of the plate which is not the desired item 
for aircrafts. 
It seems that any attempt to increase the critical aerodynamic 
pressure of the plate leads to a decrease in the lift force or rise 
in the weight of the plate which is  not desired for aircrafts. 
Thus, considering the maximum allowable value for the 
weight and minimum allowable value for lift force (area) 
as design constraints, optimum values of material variation 
parameters (κ and q) and geometrical parameters (α, β, γ and 
φ) can be found to increase the stability (critical aerodynamic 
pressure) of the plate. This constrained optimization is 
considered by authors as a topic for future studies.

Appendix A
Components of stiffness and mass matrices used in Eq. (44) 
are presented as

(c) φ=0.6 (d) φ=0.7
Fig. 12. Variation of the first six dimensionless frequencies for a functionally graded sandwich plate versus variation of non-

dimensional aerodynamic pressure for various values of aspect ratio. 
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and following diagonal matrices are considered:

( ) ( ) 1,2,3, ,
, , .

1, 2,3, ,ii i jj j

i N
a F b H

j M
ζ η

= …
= =

= … (A1)

Appendix B
Definition of the matrix [T] appeared in Eq. (45) are presented 
as follows:
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where components of this matrix are related to the boundary 
conditions at four edges of the plate as:
at edge η=0:
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at edge ζ=0:

{ }
( ) [ ]( )

( )
( ) [ ]( ) ( )

( )( ) [ ]( )
( )( )

( ) [ ]( )
( )

71 81 *

72 3 1 1

1 1

73 4 1 1 4 1

2 2
82 1

2 2
1

2 2
83 1

1

91

0 ,

2 0

2 ,

0 2 ,

0 2

,

2 0

2 ,

M NM

x y i

x y i

x y i i

x y x y i

x y i

x y x y i

x y i

T T

T F n n b A

n n A I

T F n n b A A I

T F n n n n b A

n n A I

T n n F n n b A

n n A I

T

ζ

η ζ

ζ η ζ

ζ

η ζ

ζ

η ζ

υ υ

υ

υ υ υ

= =

 = + ⊗ 

 + ⊗ 

  = + ⊗ + ⊗   

 = − − ⊗ 

 + − ⊗ 

 = − + ⊗ 

 + ⊗ 

( ) [ ]( )
( )

( )
( )

1

1

92 1

93 1

0
sec ,

,

,

x y i

y i

x i

y i

n F n b A

n A I

T n I I

T n I I

ζ

η ζ

η ζ

η ζ

α
  + ⊗  =  

 + ⊗   

= ⊗

= ⊗

(B4)

where

cos , sin .x yn nα α= − = (B5)

and finally at edge ζ=1:
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in which

cos , sin .x yn nβ β= = − (B7)

It should be noted that in Eqs. (B2) - (B6), the following 
obvious relations are considered:
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