[1] A.M. Bloch, N.E. Leonard, J.E. Marsden, Stabilization of mechanical systems using controlled Lagrangians, in: Decision and Control, 1997., Proceedings of the 36th IEEE Conference on, IEEE, 1997, pp. 2356-2361.
[2] A.M. Bloch, N.E. Leonard, J.E. Marsden, Matching and stabilization by the method of controlled Lagrangians, in: Decision and Control, 1998. Proceedings of the 37th IEEE Conference on, IEEE, 1998, pp. 1446-1451.
[3] A.M. Bloch, N.E. Leonard, J.E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem, IEEE Transactions on automatic control, 45(12) (2000) 2253-2270
[4] A.M. Bloch, D.E. Chang, N.E. Leonard, J.E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping, IEEE Transactions on Automatic Control, 46(10) (2001) 1556-1571
[5] D. Auckly, L. Kapitanski, W. White, Control of nonlinear underactuated systems, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 53(3) (2000) 354-369.
[6] D. Auckly, L. Kapitanski, On the .-equations for matching control laws, SIAM Journal on control and optimization, 41(5) (2002) 1372-1388.
[7] F. Andreev, D. Auckly, S. Gosavi, L. Kapitanski, A. Kelkar, W. White, Matching, linear systems, and the ball and beam, Automatica, 38(12) (2002) 2147-2152.
[8] D.E. Chang, A.M. Bloch, N.E. Leonard, J.E. Marsden, C.A. Woolsey, The equivalence of controlled Lagrangian and controlled Hamiltonian systems, ESAIM: Control, Optimisation and Calculus of Variations, 8 (2002) 393-422.
[9] C. Woolsey, C.K. Reddy, A.M. Bloch, D.E. Chang, N.E. Leonard, J.E. Marsden, Controlled Lagrangian systems with gyroscopic forcing and dissipation, European Journal of Control, 10(5)(2004) 478-496.
[10] R. Ortega, M.W. Spong, Stabilization of underactuated mechanical systems via interconnection and damping assignment, IFAC Proceedings Volumes, 33(2) (2000) 69-74.
[11] R. Ortega, M.W. Spong, F. Gómez-Estern, G. Blankenstein, Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment, IEEE transactions on automatic control, 47(8) (2002) 1218-1233.
[12] R. Ortega, A. Van Der Schaft, B. Maschke, G. Escobar, Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems, Automatica, 38(4) (2002) 585-596.
[13] C.F. Aguilar.Iba.ez, O.O.G. Frias, A simple model matching for the stabilization of an inverted pendulum cart system, International Journal of Robust and Nonlinear Control, 18(6) (2008) 688-699.
[14] J.-J.E. Slotine, W. Li, Applied nonlinear control, Prentice hall Englewood Cliffs, NJ, 1991.
[15] J. José, E. Saletan, Classical dynamics: a contemporary approach, in, AAPT, 2000.
[16] J.E. Marsden, Lectures on mechanics, Cambridge University Press, 1992.
[17] A. Donaire, R. Mehra, R. Ortega, S. Satpute, J.G. Romero, F. Kazi, N.M. Singh, Shaping the energy of mechanical systems without solving partial differential equations, IEEE Transactions on Automatic Control, 61(4) (2016) 1051-1056.
[18] J.K. Holm, M.W. Spong, Kinetic energy shaping for gait regulation of underactuated bipeds, in: Control Applications, 2008. CCA 2008. IEEE International Conference on, IEEE, 2008, pp. 1232-1238.
[19] C. Belta, V. Kumar, Trajectory design for formations of robots by kinetic energy shaping, in: Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on, IEEE, 2002, pp. 2593-2598.
[20] N.K. Haddad, A. Chemori, S. Belghith, External disturbance rejection in IDA-PBC controller for underactuated mechanical systems: From theory to real time experiments, in: Control Applications (CCA), 2014 IEEE Conference on, IEEE, 2014, pp. 1747-1752.
[21] A. Donaire, J.G. Romero, R. Ortega, B. Siciliano, M. Crespo, Robust IDA.PBC for underactuated mechanical systems subject to matched disturbances, International Journal of Robust and Nonlinear Control, 27(6) (2017) 1000-1016.
[22] N.K. Haddad, A. Chemori, S. Belghith, Robustness enhancement of IDA-PBC controller in stabilising the inertia wheel inverted pendulum: theory and real-time experiments, International Journal of Control, (2017) 1-16.
[23] S. Riachy, Y. Orlov, T. Floquet, R. Santiesteban, J.P. Richard, Second.order sliding mode control of underactuated mechanical systems I: Local stabilization with application to an inverted pendulum, International Journal of Robust and Nonlinear Control, 18(4.5) (2008) 529-543.