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ABSTRACT: Controlled Lagrangian method uses the inherent geometric structure of the energy of
the mechanical systems to provide a stabilizing algorithm for underactuated mechanical systems. The
presented method belongs to a larger family of nonlinear control algorithms, namely energy shaping
methods in which the controller is designed by providing necessary modifications in the mechanical
energy of the system. This paper presents a sensitivity analysis of Controlled Lagrangian method. It is
shown that the method presents a suitable performance under the effect of structured (or parametric)
uncertainties such as masses values, their positions and their influence on the inertia tensor. Then, the sequel
investigates the robustness level of the designed controller in the presence of structured uncertainties. A
detailed robustness proof of the scheme is established in this paper. Simulations are provided for a linear
inverted pendulum cart system to validate analytical results of robustness to parametric uncertainties.
Simulation results confirm that the designed controller for the inverted pendulum, which is unstable and
underactuated, is well robust against parametric uncertainties as the analytical studies predicted. The
method was also compared with the sliding mode approach, which showed a superior robustness against
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parametric uncertainties and a more practical control input value.

Underactuated systems

1- Introduction

Controlled Lagrangian method is an energy shaping method
designed to control underactuated mechanical systems.
It uses kinetic energy shaping as well as potential energy
shaping to control underactuated systems. This method
was initially introduced in [1-4]. It is shown that in order to
stabilize an underactuated system in its unstable equilibrium
point, shaping the potential energy alone is not sufficient
and a modification in kinetic energy is also essential ([3, 4]).
Bloch et al. [3, 4] introduced a method to solve nonlinear
PDEs of kinetic and potential energy shaping. Auckly et al.
[5- 7] transformed the nonlinear PDEs of kinetic shaping to a
system of linear PDEs, called A method where the solutions
were more straightforward. Change [8] used gyroscopic forces
in the Controlled Lagrangian method to attain more freedom
in controller parameters; consequently, he successfully
stabilized the Fruta pendulum. Woolsey et al. [9] studied
the effect of physical dissipation on the performance of
Controlled Lagrangian method and showed that the physical
dissipation may deteriorate the controller performance. In
order to avoid difficulties of solving the PDEs of shaping
the total energy, some assumptions were proposed in [17];
however, the assumptions were such restrictive that only a
narrow class of mechanical systems was able to satisfy them.
These works were done in Lagrangian framework. Similar
endeavors were also presented in Hamiltonian framework,
entitled as Interconnection and damping assignment passivity-
based control or IDA-PBC [10- 12]. Controlled Lagrangian
method and IDA-PBC are shown to be equivalent [8]. Using
Controlled Lagrangian method, a simple control law for
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stabilizing inverted cart pendulum system was presented
in [13]. The scheme has found other applications such as
speed regulation of biped walking robots [18] and trajectory
generation for a cluster of mobile robots [19].

Slotin and Li [14] divided model imprecision into two
categories: structured uncertainties and unmodeled dynamics.
Dissipation and Colomb friction are included in unmodelled
dynamics and their effects on Controlled Lagrangian method
was studied in [9]. It was shown in [20] that IDA-PBC is able
to reject external disturbances for a class of underactuated
mechanical systems, including an Inertia Wheel. Donaire et
al. [21] robustified IDA-PBC method for a specific class of
disturbances by adding a nonlinear PID to the outer loop of the
controller. Using an adaptive algorithm, the performance of
IDA-PBC were improved for an Inertia Wheel [22]. All of the
aforementioned works were done in Hamiltonian framework.
In the present paper, effects of structured uncertainties on
Controlled Lagrangian method are studied in Lagrangian
framework. It is shown analytically that the method is well
robust to structured uncertainties. In order to validate this
assertion, a controller is proposed for the inverted pendulum
cart system using Controlled Lagrangian method. Then, the
effects of structured uncertainties are studied exhaustively
by simulations. Moreover, the method was compared with
the robust sliding mode approach which showed a superior
performance and a more practical control input value.

The organization of this paper is as follows. In section 2,
the general method of controlled Lagrangian is presented.
Section 3 presents structured uncertainties and their effect on
controlled Lagrangian method; then, the stability of the method
is established in the presence of structured uncertainties. In
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section 4, the robustness of Controlled Lagrangian method
to the structured uncertainties is illustrated by a series of
simulations. These simulations are performed for an inverted
pendulum on a cart system. Finally, conclusion and further
remarks are presented in section 5.

2- General Method of Controlled Lagrangian

As mentioned in [5, 8], Controlled Lagrangian method is
a control strategy for underactuated mechanical systems
with a regular Lagrangian. A regular Lagrangian system,
by its definition, is a Lagrangian with the property of
[(@°L)/(0¢'0¢)]#0. This expression is equivalent to the
existence of a non-degenerative inertia tensor in a mechanical
system. The method shapes both potential energy and
kinetic energy of the system to obtain asymptotical stability
in a naturally unstable point. The main idea of controlled
Lagrangian method is based on a simple fact, viz. different
Lagrangians can produce the same equation of motion (see
[15] for more details). Different developers of this method use
different notations and in this paper notations and symbols of
[8] are used.

For a simple Lagrangian system the triple (L, £ W) is defined
as the controlled Lagrangian system where L=7-U is the
Lagrangian of the system, F is an external force acting on
the system and W is the control bundle of the system.
Underactuation of a system is depicted by the inequality:
rank W < dim Q (Q is the configuration space of the system).
Equations of motion of this system is then given by

(M

where n = dim Q and m = rank W.

It is assumed that two different Lagrangians, i.e. (L,FW)
and (L,F, W) generate same equations of motion. Hence,
expression ¢=¢ is valid for all g€Q and a direct calculation
shows the following expression is also valid for all geQ.
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For a simple mechanical system, Equation (2) simplifies to

2

[ Ju = ([C1-[M]IMT'[C]) {a} + (g}~ [M]IMI] ' (¢}

S 3)
—F +[M]|[M]"'F +[M]M] ¥ },
where [M] is inertia tensor, [C] is Coriolis and centripetal
matrix and {g} is 0U/0q.
Because of the underactuation, [ /] is not a full rank matrix;
therefore, it has a nonzero left annihilator, more specifically,
a matrix [#*] can be defined with two properties: First,
T°Q =W@W* and second, [W*][W]=0. These properties are
satisfied by a matrix whose rows are defined by

v el 'Q|VaeW v,a)=0 4
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Left multiplication of Equation (3) by [#*] results in
0=[w *](1c1-[M]¥1"1€) tay

[ (ter-[M]vT " g})

+[w i](-F +[M]MT'F +[M]V] ' ]u)

%

It can be shown that in order to satisfy Equation (2), both
control bundle W and the external force should be in the form
of

W1=[MIMT'W ], (©)

F=[M]M]'F @)
By inserting Equation (6) and (7) into Equation (5), it reduces
to two equations given as

0=[w *](1C1-[M]M][C]), @®)

0=[w*](tg3-[M]V1"ig3) ©)

Equations (8) and (9) are known as matching equations. First,
Equation (8) should be solved in order to find all elements
of [M] (that shapes kinetic energy) and then, by substituting
[M] for Equation (9), the potential energy is to be shaped to
determine the potential function U.

In practice, Equation (8) consists of a set of first-order
nonlinear PDEs whose solution can be quite challenging.
However, using a new variable, called 4, nonlinear PDEs (8)
and (9) can be transformed to a set of triangular first order
linear PDEs. This variable is defined by [5]:

A=[M]"[M]. (10)

The /1 equations in local coordinates are given by [5] as,

o(m

Al . ,
—k")—[ak,i]z;—[ﬂk,i]/l; =0, (11)
oq
on . k k om.,
/1;‘ m,’f +—a/1"f n%k/. +—a/1"‘, m,, :—m’f , (12)
o6q" oq'" 7 0q’ oq*”
: 6Uk Y (13)
g 0q“
F =ri,m"F,. (14)

In Equations (11) to (14), Latin indices vary from 1 to a total
number of freedom and Greek indices vary from 1 to the
number of underactuation. These equations are triangular,
i.e. Equation (11) is solved to determine A/ then, using
4, Equation (12) is solved for n%l,/., and the shaped potential
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energyA(U), is obtained from Equation (13). Finally, external
force F'is obtained from Equation (14).
Equations (11) to (14) indicate that the two Lagrangian
(L,EW) and (L,F W) generate the same equations of motion.
In solving Equations (11) to (14), some arbitrary functions
and constants remain unknown. These arbitrary unknowns
are defined as control gains and are used to achieve stability
of the system. In the rest of this section, it is assumed that
no external force is applied on the system. Later, in section
3, an external force is employed to introduce structural
uncertainties.
In controlled Lagrangian method, the Lyapunov candidate for
the system is its mechanical energy (E = T + U). Here, the
energy-momentum method is used to establish the stability
of the system. The general theory of energy-momentum
method with its details is given in [16]. In this method, a
simple mechanical system is stable at a specific point if the
second variation of the mechanical energy function of the
system is positive-definite at that point. In other words, if
all eigenvalues of the Hessian matrix of mechanical energy
function have a positive sign, the system is stable. The second
variation or Hessian matrix is:

O’E

g _
o’ |,., 10494 ],
0°E 0’E

L 49q |, |04 ],

For a simple mechanical system, the second variation matrix
at the origin (¢ = 0, ¢ = 0) reduces to

E |:62 :|
oq’
52 — q

0 M

(15)

2nx2n T

; (16)

where U is the potential function and M is the inertia tensor.
All of the arbitrary functions and constants should be chosen
in a proper manner to guarantee the positive-definiteness
of the Hessian matrix. It should be noted that the positive-
definiteness of the Hessian matrix indicates only stability of
the system. For asymptotic stability, a proper control force u
should be implemented to the system. Control bundle [W] is
obtained from solving Equation 8. It is assumed here that m
in Equation (1) is 1, so only one degree of freedom is actuated
and [W] is reduced to a column matrix whose elements are
w.,i=1...n. Inthis case, if # is chosen as

i

u=—co(wlq'1+-~wnq'”) ¢, >0, 17
It can be shown that the system (i, 0, Vf/) becomes
asymptotically stable. Finally, the equivalent control force u
such that the system (L, 0, /) becomes asymptotically stable is
obtained by employing Equation (2) or Equation (3).
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3- Robustness of Controlled Lagrangian to Structured
Uncertainties

Structured uncertainties are some kinds of inaccuracies
on the terms included in the model, but their values are
different in the model and in the real plant e.g. masses, the
center of masses, etc. [14]. In this section, these uncertainties
are introduced in the equations of motion. Then, the effect
of structured uncertainties on the stability of the system is
illustrated by modifying the Hessian matrix.

For a simple mechanical system with no external force,
Equations of motion (1) in local coordinate are

oUu :
M,jq +[kj,ilg g’ +—=W u’,

a i 7 (18)

where [4j,i] are Christoffel symbols of first kind and their
relation to Coriolis and Centripetal matrix C is

C, =[kj.i}".

It should be mentioned that Christoffel symbols are not
independent quantities and strictly depend on the inertia

tensor M by
B oM ; _
oq*

Structured uncertainties are included in the model, but their
values are not precise. In this paper, these imprecisions are
shown by tilde symbol ~. Considering these uncertainties,
Equation (18) becomes

oM ,
oq J

oM,
oq'

i, k]== {

(M, +M,)q’ +((kj.i1+ ki .i1)G" ¢’

oU oU ; (19)
—+—=Wu’,
Where
1. oM, oM,
[k] l]— M, K = |
oq’ oq' 0q

These uncertainties can be modeled as external forces in the
right hand of Equation (19),

Maq'"+[kj,i]q'kq’+6q—,=ﬁ +Wu’, (20)
where

o . oU
F,=-M G’ ~[kj,iYg"q’ "o 1)

Now, suppose a controller u is designed by the Controlled
Lagrangian method and asymptotic stability of the original
system (L,0,%) is attained. For this controller, shaped
kinetic energy T= (12)m, qq’, shaped potential energy U and
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dissipation force u are found such that they satisfy equations
(11) to (13) and (17). Also, the associated Hessian matrix 6°E
with the designed controller is positive-definite at the origin.
For this system equations of motion are

ou A -
M g’ R +aq, =F AW (22)

where I:"iZO because //=0. Hessian matrix of this system is

(23)

Referring to equation (14), if F, exists in system (L, EW),

its equivalent in system (iFVf/) is ﬁl_:]\%jM"F .- For the
structured uncertainties /', in Equation (21), the equivalent
force in system (L, E W) is

=M M "M G ~M M " [sr,k1§"q
(24)

and hence, the equations of motion (22) become

g T OU
M ,q’ +[kj,il" g’ +F:Wiju-’ —MijM-’kMksq
q
(25)
" 6U

—M M’k[sr klg'q" — M M’
oq"’

—~

(M, +M M *M )G +(Isr 1+ M M ¥ [srk1)d°g"
(26)

Equation (26) presents equations of motion of a Lagrangian
system with inertia tensor

M +MM 'M,
and potential function U+ l£], where U is defined by

aU
oq

=MM"' ou
oq

According to the energy-momentum stability criterion,
Lagrangian system with Equations of motion (26) is stable
if the associated Hessian matrix is positive-definite. Hessian
matrix of (26) is
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(27)
0 M+MM™'M

For the exact model, M, U= 0; hence, Hessian matrix (27)
reduces to (23) and is positive-definite. In the uncertain model
(19), two terms MMM and (MM (0U/dq)) affect Hessian
matrix and change its eigenvalues. The system remains
stable as long as the eigenvalues are positive. Starting from
zero, the uncertainty terms A , U change the eigenvalues of
the Hessian matrix gradually. Trajectories of the perturbed
system remain bounded as long as the positive-definiteness
of Hessian matrix is preserved.

To establish the asymptotic stability of the perturbed system,
we use mechanical energy of the Lagranglan (L0, W) as the
Lyapunov function and show that it is a negative semidefinite.
Here we assume L' is the Lagrangian of the perturbed system
with the inertia tensor M'=M+MM'M and the potential

function U'=U+U. 1t is also assumed that the perturbed
system is stable (the Hessian matrix (27) is positive-definite).
For this Lagrangian, it is easy to show that the energy term is
E'=(0L'/04")-L'. Hence, the time derivative of £’ produces the
equations of motions as

d ., oL . d(oL') dL'

—E'=——q +4

dt oq' dr aq dr

oLt oL il o’L' .,

“aq' ! Taqieq Y Tagiag 1 Y

oL’ ., oL'"" . ( oL 7/ oL ., oL

=749 .49 = a4 Y9 A

dq o4 04'oq 04'0q oq
‘ U (-~ .

=q [M q +C ;4 +5j=q (Wl./.uj),

where in the last equation, we used (18). Then, substituting u u,
as (17) reduces the time derivative of £’ as

j—tE'sz (6,6 +0 6>+ 4 §") <0.

Hence, the asymptotic stability is established by the virtue of
LaSalle’s theorem.

4- Controller Design and Simulations

In this section, Controlled Lagrangian method is employed
to stabilize an inverted pendulum cart system, then the
structured (parametric) uncertainties are introduced to the
system. The robustness of the controller in the presence of
parametric uncertainties is demonstrated by analytical means
as well as a number of simulations. In the analytical study,
the materials of section 3 are used frequently. In order to
evaluate the performance of the proposed method, the results
are compared with those of a second-order sliding mode
approach [23] under similar circumstances.
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Fig. 1. Inverted pendulum cart system

4- 1- Controller design
The Lagrangian of the inverted pendulum cart system (Figure
1)is

L=

Bcos(wm K cos(@).  (25)
D s

1r. . A
E[¢ SJ{B cos(g)

where A =mlP,B=ml,D=m + M ,K =mgland M, m, [ are
cart mass, pendulum mass and pendulum center of mass of
pendulum, respectively. Control bundle of the system is

o]

During the designing process, we assume that no external
force exists, F = 0.

The shaped inertia tensor [M] the shaped potential function
U and the control bundle [W] of the equivalent Lagrangian
(L E W) are obtained by solving Equations (11) to (13)". as

. {AC _cic ( S(o(r )))Z (B-C,C;) Ccos(4(1))(B —C2C3)}, (29)
C,cos(¢(t))(B —C,C5) ¢
U =KC, cos(¢)+%e(s —C.C,sin())’ (30)

[w]=[m][M]4m=Acz —BC,(B -C,C,)cos’(g) {ﬁczcos(m

AD — B cos’(9) 1 } (31)

Second variation matrix of the energy function E=T +l> or its
Hessian matrix is obtained by applying Equation (15) to the
energy function E at the origin (s,$,4,4=0)

1 Equations 11 to 13 are sets of PDEs and have
general solutions. In order to obtain the control
law, a particular solution would be sufficient.
Other solutions lead to different control laws and
different controller gains.
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—KC,+¢CC,> —eC\C, 0 0
SF = -C,C, € 0 0 ]
0 0 AC,-Cic,B+ciciC, C,B-CC,c,| (32)
0 0 C,B-C,C,C, c,

In Equations (29) to (32) constants 4,B,K > 0 are systems’
constants which were defined beneath Equation [28], and C,
C,, C,, care controller gains. These controller gains should be
chosen in a proper manner to assure the positive-definiteness
of Hessian matrix (32).

In order to achieve asymptotic stability, feedback dissipation
control force # must be implemented. According to Equation
(17) and control bundle (31), the dissipation control force is

AC,-BC,(B -C,C,)cos’(¢)
AD —B?cos’ ()

i =—c, (-C.C, cos(@)g+5),

>0, (33)
where ¢, is another controller gain that indicates the dissipation
rate of the energy. The equivalent controller force for the
inverted pendulum cart system is obtained by implementing
Equation (3).

4- 2- Structured uncertainties

In the inverted pendulum cart system, values of cart mass M,
pendulum mass m and pendulum center of mass / could be
different in the controller model and in the real model. In this
subsection, for simplicity, it is assumed that the structured
uncertainty is in cart mass. Following a similar approach to
what was done in Equations (20) and (21), the external force
due to the cart mass uncertainty is

0 0 |s
F=- -1,

0 Mil¢
hence, the equivalent external force F of the Force (34) is
obtained by employing Equation (14).

(34

Fomv |0 O 3
- 0 M| d] (33)
Force (35) changes the inertia tensor Mto
~ 1 0 —BM cos
MI+——— os(¢) , (36)
AD —B"cos*(¢)| 0 DM

while the potential energy remains intact. Continuous change
in M, starting from 0, changes the eigenvalues of inertia
tensor M gradually. The system remains stable until the
value of M becomes large enough to change the sign of one

of the eigenvalues of M. Other structured uncertainties act
in a similar manner, except that they cause a change in both
potential energy and kinetic energy.

4- 3- Simulations

In order to verify the robustness of Controlled Lagrangian
method to structured uncertainties, a series of simulations
has been done. In addition to these simulations, analytical
results of the previous subsection are used to determine
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Table 1. Physical specification of inverted pendulum cart system and controller gains

M m ! C, C, C, ¢ c,
179 ke 0.127 kg 17.78 cm -1 -3.68 0.012 0.01

the allowable range of cart mass uncertainty in which the
controller remains stable. Simulations are performed by
physical specifications and the controller are gains given in
Table 1. Using these values, Equation (36) indicates that the
system (28) with controller (3) remains stable if A/ varies
within the interval (-0.8M , +0.1M). Figures 2 to 4 show the
controller performance and its input history in the presence of
the structured uncertainty in cart mass. The simulation results,
shown in Figures 2 to 4, confirm that if M varies within the
interval (-0.8M , +0.1M), the system remains stable. Similar
argument to what has been done in Equation (36) can be used
to find limits of m and /. Figures 5 to 10 illustrate the effect of
m and [ on the controller performance. Additionally, the limits
of m and [ for which the system remains stable are displayed
in these figures.

4- 4- Second-order sliding mode control of Inverted
pendulum cart system

Second-order sliding mode control scheme is a branch of
sliding mode method that is tailored to deal with a class of
underactuated systems [23]. The key element in this method
is to find a diffeomorphism in which the zero dynamics of the
transformed system becomes locally asymptotically stable.
For system (38), the coordinate transformation

sin ¢
=s—In|1+—— 37-
g [ cos¢] (37-2)
S=tang—An—An (37-b)
5 Trajectory of Cart Position
— =0
ol - == M = +5%M
M = +10%M
———— M = —80%M

-
T

El
=
S \ Lt \
E 0 'l’ - \s.\,~ 3 4 N
7 — — 3
g FREANT=
+ L4
2
O -1

2t

3 - - -

0 5 10 15 20
Time [sec]

(a) Controlled Lagrangian

transforms the system into a proper system in which the
internal dynamics ij=g(1,7,&&) is locally asymptotically
stable in (0,0,0,0). Hence, the dynamics &=f (1,17,&E)+u is
easily controllable with the control law [23]

u(n.,&,8) =~ (n.1,6,€)—asign(£)
—~Bsign(£)-hé-pé,

where sign(.) is the sign function and 4 ” /12, a,p, h, pdenote
controller’s gains. For the physical specifications of Table 1,
we used the control gains 2,=32,1,=1, a=0.2, =0.01 , h=5,
p=0.5.

The results of the second-order sliding mode control are
shown in Figures 2 to 10 for different parametric uncertainties.
In Figures 2 to 4, the effect of uncertainty in the cart mass
value on the controller’s performance and the input history
is depicted. Figures 5 to 7 are devoted to uncertainty in
the pendulum mass, and Figures 8 to 10 are dedicated to
uncertainty in the length of the link.

(38)

4- 5- Discussion B

The lower boundaries of M, i and / should always be greater
than -M, -m and -/, respectively. For instance, 77=-m means that
the pendulum has no mass which is a physically impossible
circumstance. From the analytical point of view, m=-m causes
the mass inertia tensor M to become degenerated, which is
an indication of instability. Simulation results of Figures 5
to 7 confirm this assessment. Surprisingly, in these Figures,
as the uncertainties approach the lower limits, the controller

Trajectory of Cart Position

0.2
— =0
0.15 - — M =+1%M
ol ——— M = 5% M
g 0.05r
= o e
S 0
=
wn
S
Ay -0.05
g
=
o -01
-0.15
-0.2
-0.25 : ) '
0 5 10 15 20
Time [sec]
(b) Sliding mode

Fig. 2. An example of a figure Comparison of controllers’ performance to control the cart position in the presence of cart mass
uncertainty M
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Trajectory of Pendulum Angle

50
— =0 4
- == M = +5%M
M = +10%M | 1
— ———— M = —80%M
jol0} 4
[}
=
<L LGN j
2 AN /
R V]
. /
5 4 Ny
= / =
=
=]
(5} 4
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-40 .
-50 : : : :
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(a) Controlled Lagrangian

Trajectory of Pendulum Angle

30
M=0
- — M = 1%M
20 ——— M = —5%M

-
o
L

Pendulum Angle [deg]
3 o

Time [sec]
(b) Sliding mode

Fig. 3. Comparison of controllers’ performance to control the pendulum angle in the presence of cart mass uncertainty M

Control effort

25 T T
20 — ]E: 0 i
- == M = +5%M
M = +10%M |
———— M = —80%M
Z
+~ ~ g
2 \ ,
= .\ >
—_— " v ‘
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=
Q
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25 L : : : :
0 2 4 6 8 10
Time [sec]

(a) Controlled Lagrangian

Comtrol effort

50T

Control input [N]

:

8

Time [see]
(b) Sliding mode

Fig. 4. Comparison of control input in the presence of cart mass uncertainty M

shows a better performance. This behaviour can be explained
by the energy term of the system. In the designing process
of the controller, it is assumed that the physical parameters
are known exactly and these parameters are used to calculate
dissipative control force (see Equation (17)). Negative
structured uncertainties mean an overestimation of physical
parameters in the controller; therefore, a relatively larger
dissipative control force, to what is needed by the plant, is
produced by the controller. Hence, the controller leads to a
better performance. On the other hand, while uncertainties
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approach the upper limits, although the controller may not
meet asymptotic stability, stability is still achieved. This
result is shown in Figures 2 to 10 for M= 0.1M, in= 0.4m and
/=041

The upper boundaries of uncertainties also depend on the
controller gains. It should be mentioned that only C,, C, and
C, affect upper boudaries. Although ¢ enhances asymptotic
stability, it is used to regulate cart position and has no effect
on the stability of pendulum angle. ¢, is used to dissipate
energy from the system and has no effect on stability (It is
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Trajectory of Cart Position
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Fig. 5. Comparison of controllers’ performance to control the cart position in the presence of pendulum mass uncertainty m
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Fig. 6. Comparison of controllers’ performance to control the pendulum angle in the presence of pendulum mass uncertainty m

shown in section 3 that Hessian matrix is independent of c,).
Overall, the upper boundaries can be extended by changing
the controller gains C,, C, and C, in the Table 1. If the
numerical value of C,, for instance, changes to -5, the upper
boundary of M extends from 0.1M to 2.5M. This implies that
choosing control gains properly is an important issue in the
robustness of the controller because they define the limits of
uncertainties that can be tolerated by the controller.

For further evaluation, the comparison between our
proposed method and second-order sliding mode control
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is conducted in Figures 2 to 10. The figures show that the
controlled Lagrangian method is more robust than the
sliding mode scheme. For instance, according to Figures 2
and 3, the limits of M in Controlled Lagrangian approach is
ME€[-0.8M,+0.05M], while it is only M€[-0.05M,+0.01M] for
the sliding mode approach. Similar situations are observable
in Figures 5 and 6 for limits of 72, and in Figures 8 and 9
for limits of /. On the other hand, the performance of sliding
mode approach in its robust region of attraction (the values
of uncertainties for which the controller is robust against)
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Fig. 8. Comparison of controllers’ performance to control the cart position in the presence of link length uncertainty /

is superior than the performance of Controlled Lagrangian
approach. Worded other way, the sliding mode approach
produces better results than controlled Lagrangian method
when it is stabilizeable, but the regain of the attraction of
Controlled Lagrangian method is larger than the sliding
mode’s.

Comparison of the control input history between the two
methods in Figures 4, 7 and 10 suggests that the sliding mode
approach produces much larger values of control forces.
These high values of control forces can easily saturate the
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actuators of'the plant which results in instability of the scheme.
However, Controlled Lagrangian approach produced more
practical values for various uncertainties. Although the input
values have increased in the presence of uncertainties, the
level of the increase is tolerable in the practical applications
where saturation is an important issue.

5- Conclusion and Further Remarks
Effects of structured uncertainties on the performance and the
control input of Controlled Lagrangian method were studied
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Fig. 10. Comparison of control input in the presence of link length uncertainty /

in this article. Since Controlled Lagrangian method is an
energy-based method, the structured uncertainties effect has
been studied via energy term of the system, more specifically
through its Hessian matrix. Consequently, the robustness of
Controlled Lagrangian method to the structured uncertainties
was investigated by examining positive-definiteness of
Hessian matrix. It is concluded that the control gains that shape
the inertia tensor provide limits of uncertainties for which the
controller remains stable. In order to verify analytical results,
extensive simulations were performed on the well-known
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inverted pendulum cart system. Comparison of the proposed
scheme with the robust sliding mode approach showed a
better robustness of the scheme. Additionally, it was observed
that the proposed method provided a smaller control input
that is more practical for the situations in which the actuator
saturation is essential.
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