Document Type : Research Article
Authors
Department of Mechanical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
Abstract
Highlights
[1] H. Schmid-Schönbein, R. Wells, Fluid Drop-Like Transition of Erythrocytes under Shear, Science, 165(3890) (1969) 288-291.
[2] H.L. Goldsmith, J. Marlow, Flow Behaviour of Erythrocytes. I. Rotation and Deformation in Dilute Suspensions, Proceedings of the Royal Society of London. Series B. Biological Sciences, 182(1068) (1972) 351-384.
[3] T.M. Fischer, M. Stohr-Lissen, H. Schmid-Schonbein, The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow, Science, 202(4370) (1978) 894-896.
[4] R. Tran-Son-Tay, S.P. Sutera, P.R. Rao, Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion, Biophysical Journal, 46(1) (1984) 65-72.
[5] C. Pfafferott, G.B. Nash, H.J. Meiselman, Red blood cell deformation in shear flow. Effects of internal and external phase viscosity and of in vivo aging, Biophysical Journal, 47(5) (1985) 695-704.
[6] M. Abkarian, M. Faivre, A. Viallat, Swinging of Red Blood Cells under Shear Flow, Physical Review Letters, 98(18) (2007) 188302.
[7] J. Dupire, M. Socol, A. Viallat, Full dynamics of a red blood cell in shear flow, Proceedings of the National Academy of Sciences, 109(51) (2012) 20808-20813.
[8] S. Ramanujan, C. Pozrikidis, Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities, Journal of Fluid Mechanics, 361 (1998) 117-143.
[9] E. Lac, Barth, Egrave, D. S-Biesel, N.A. Pelekasis, J. Tsamopoulos, Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling, Journal of Fluid Mechanics, 516 (2004) 303-334.
[10] C.D. Eggleton, A.S. Popel, Large deformation of red blood cell ghosts in a simple shear flow, Physics of Fluids, 10(8) (1998) 1834-1845.
[11] X. Li, K. Sarkar, Front tracking simulation of deformation and buckling instability of a liquid capsule enclosed by an elastic membrane, Journal of Computational Physics, 227(10) (2008) 4998-5018.
[12] S.K. Doddi, P. Bagchi, Three-dimensional computational modeling of multiple deformable cells flowing in microvessels, Physical Review E, 79(4) (2009) 046318.
[13] Y. Sui, Y.T. Chew, P. Roy, H.T. Low, A hybrid method to study flow-induced deformation of three-dimensional capsules, Journal of Computational Physics, 227(12) (2008) 6351-6371.
[14] T. Kruger, F. Varnik, D. Raabe, Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method, Computers and Mathematics with Applications, 61(12) (2011) 3485- 3505.
[15] Z. Hashemi, M. Rahnama, S. Jafari, Lattice Boltzmann simulation of three-dimensional capsule deformation in a shear flow with different membrane constitutive laws, Scientia Iranica. Transaction B, Mechanical Engineering, 22(5) (2015) 1877.
[16] G. Breyiannis, C. Pozrikidis, Simple Shear Flow of Suspensions of Elastic Capsules, Theoretical and Computational Fluid Dynamics, 13(5) (2000) 327- 347.
[17] P. Bagchi, P.C. Johnson, A.S. Popel, Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow, Journal of Biomechanical Engineering, 127(7) (2005) 1070-1080.
[18] Y. Sui, Y.T. Chew, P. Roy, X.B. Chen, H.T. Low, Transient deformation of elastic capsules in shear flow: Effect of membrane bending stiffness, Physical Review E, 75(6) (2007) 066301.
[19] A. Viallat, M. Abkarian, Red blood cell: from its mechanics to its motion in shear flow, International journal of laboratory hematology, 36(3) (2014) 237- 243.
[20] Z. Hashemi, M. Rahnama, Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow, International journal for numerical methods in biomedical engineering, 32(11) (2016) e02763.
[21] Z. Hashemi, M. Rahnama, S. Jafari, Lattice Boltzmann simulation of healthy and defective red blood cell settling in blood plasma, Journal of biomechanical engineering, 138(5) (2016) 051002.
[22] Y. Sui, X. Chen, Y. Chew, P. Roy, H. Low, Numerical simulation of capsule deformation in simple shear flow, Computers & Fluids, 39(2) (2010) 242-250.
[23] Y. Sui, Y. Chew, P. Roy, Y. Cheng, H. Low, Dynamic motion of red blood cells in simple shear flow, Physics of Fluids, 20(11) (2008) 112106.
[24] R. Skalak, A. Tozeren, R.P. Zarda, S. Chien, Strain Energy Function of Red Blood Cell Membranes, Biophysical Journal, 13(3) (1973) 245-264.
[25] L.-S. Luo, Lattice-gas automata and lattice boltzmann equations for two-dimensional hydrodynamics, Ph.D. thesis, Georgia Institute of Technology, (1993).
[26] E. Evans, Y.-C. Fung, Improved measurements of the erythrocyte geometry, Microvascular Research, 4(4) (1972) 335-347.
[27] J. Charrier, S. Shrivastava, R. Wu, Free and constrained inflation of elastic membranes in relation to thermoforming-non-axisymmetric problems, The Journal of Strain Analysis for Engineering Design, 24(2) (1989) 55-74.
[28] S. Shrivastava, J. Tang, Large deformation finite element analysis of non-linear viscoelastic membranes with reference to thermoforming, The Journal of Strain Analysis for Engineering Design, 28(1) (1993) 31-51.
[29] C.S. Peskin, The immersed boundary method, Acta numerica, 11 (2002) 479-517.
Keywords