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Dynamic Response of a Red Blood Cell in Shear  Flow
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ABSTRACT: Three-dimensional simulation of a red blood cell deformation in a shear flow is 
performed using immersed boundary lattice Boltzmann method for the fluid flow simulation, as well as 
finite element method for membrane deformation. Immersed boundary method has been used to model 
interaction between fluid and membrane of the red blood cell. Red blood cell is modeled as a biconcave 
discoid capsule containing fluid with an elastic membrane. Computations are performed at relatively 
small and large shear rates in order to study the dynamic behavior of red blood cell, especially tumbling 
and swinging modes of its motion. A rigid-body-like motion with the constant-amplitude oscillation 
of deformation parameter and continuous rotation is observed for red blood cell at its tumbling mode. 
However, at a relatively large shear rate, red blood cell follows a periodic gradual deformation and 
elongation with a final ellipsoidal shape. The effect of different initial orientations of red blood cell is 
also investigated in the present paper. Results show that the dynamic response of red blood cell is not 
sensitive to this parameter.
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1- Introduction
Red blood cell (RBC), also known as erythrocyte, is among 
the most abundant cells in the blood. As a highly deformable, 
nucleus-free fluid-filled capsule, RBC has a complex 
shape similar to a biconcave disk with a larger surface area 
compared to that of a sphere with the same volume. RBC is 
capable of passing through capillaries with diameters in the 
order of its radius. During such movement, the membrane of 
RBC deforms considerably as a result of its specific property 
of low bending resistance. Such large deformation which, in 
turn, increases contact surface area with the capillary, causes 
more efficient exchange of Oxygen/Carbon-dioxide between 
RBC and its adjacent external tissues. The compromised 
RBC deformability contributing to human disease has also 
been a topic of growing research interest; diseases such as 
diabetes and malaria exhibit characteristic losses in RBC 
deformability.
Simulation of RBC deformation can be performed at different 
levels. A simple flow geometry consists of a shear flow with 
an RBC placed at its center line. Two well-known modes of 
RBC motion in such flow configuration are (a) tank-treading 
motion defined as membrane rotation around a relatively 
constant deformed geometry which occurs  at high shear 
levels, and (b) tumbling motion, which is an unsteady rigid-
body-like motion at small shear rates. Various experiments 
were carried out to reveal the details of such motions of an 
RBC in shear flow. Schmid-Schönbein and Wells [1], and 
Goldsmith and Marlow [2] were among the first researchers 
who studied RBC deformation in the simple shear flow 
experimentally and observed its tank-treading motion for the 
case of high shear rate and low viscosity ratio of the internal 
fluid to the surrounding fluid. They reported elongation of 

RBC toward a prolate ellipsoidal structure, aligned with 
the flow direction, under a shear flow. A few years later, 
Fischer et al. [3] and Tran-Song-Tay et al. [4] observed the 
same behavior in their experimental study and found that 
the frequency of the tank-treading mode of RBCs is related 
to the shear rate. Experimental findings of Pfafferott et al. 
[5] confirmed that when internal fluid is more viscous than 
its surrounding fluid, human-old-RBCs undergo tumbling 
motion and human-young-RBCs deform and align with the 
flow direction. The tumbling motion at low shear rates was 
also observed in the experiment of Abkarian et al. [6]. They 
reported another mode of motion for RBCs superimposed 
to tank-treading one, called swinging motion, in addition to 
the tumbling and tank-treading motions. The characteristics 
of this mode are periodic shape deformation and oscillation 
with inclination angle about a mean value ranging from 6º to 
25º [2] while the membrane rotates around the liquid inside. 
In a recent experiment at a weak shear rate, Dupire et al. 
[7] reported that by  increasing shear rate, RBC orientation 
changes until a steady-rolling state obtains. At moderate 
shear rates, RBC keeps its biconcave shape and shows a 
shape-preserving behavior in tank-treading/swinging regime. 
Simulation of spherical capsule deformation in shear flow 
has been done using different techniques such as boundary 
element method [8, 9], immersed boundary method [10-12] 
and immersed boundary-lattice Boltzmann method [13-15]. 
However, due to the complex geometry of the RBC and the 
numerical instabilities encountered in numerical simulations, 
limited research works were reported dealing with the 
dynamic behavior of RBCs in shear flows. There are some 
published papers incorporating two-dimensional simulation 
of a biconcave disk under shear flow [16-18]. The recent 
experimental, analytical, and numerical advances in the field 
of RBC deformation in shear flow are reviewed by Viallat Corresponding author, E-mail: rahnama@uk.ac.ir 
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and Abkarian [19]. Three-dimensional simulations of RBC 
were reported by Eggleton and Popel [10] using immersed 
boundary method, and Ramanujan and Pozrikidis [8] using 
boundary element method. They studied the large deformation 
of a three-dimensional biconcave disk under shear flow. 
However, due to instabilities in their computations, the 
deformation of RBC was reported only for an initial transient 
period while Ramanujan and Pozrikidis [8] had reported an 
oscillatory behavior for the biconcave disk at later times. 
Unlike the spherical capsules, their results show that steady 
tank-treading mode is not achieved for the structures that 
have a non-spherical shape at rest and an oscillatory behavior 
as  membrane rotation is expected. 
Recently, in the frame work of the mesoscopic methods, there 
has been a hybrid method consisting  of immersed boundary 
lattice Boltzmann method (IBLBM) and finite element method 
(FEM) has been used to predict flow-induced deformation of 
capsules [13, 20, 21]. Compared with the previous studies, it 
was shown that this hybrid method is capable of predicting the 
dynamic behavior of RBCs accurately. Sui et al. [22] studied 
the deformation of two-dimensional non-circular capsules 
with initially elliptical and biconcave shapes, as well as oblate 
spheroidal capsules in simple shear flow. They observed that 
the non-circular capsules with/without considering bending 
rigidity always achieve a steady tank-treading motion. The 
swinging and transition from swinging to tumbling motion for 
a biconcave discoid capsule were numerically investigated by 
Sui et al. [23]. Their results showed a good correspondence 
with the previous experimental works.  
Due to the complexities of RBC deformation under shear 
flow, limited experimental works were published to indicate 
RBC motion. Tumbling and swinging motions of a red blood 
cell under shear flow which were reported experimentally 
by Abkarian et al. [6] are among those RBC’s behavior 
which have not been fully and numerically explored.  The 
present paper is devoted to the modeling and simulation of 
an RBC in a shear flow as a three-dimensional liquid-filled 
biconcave discoid with an elastic membrane obeying Skalak’s 
constitutive law [24]. Using IBLBM combined with FEM, 
detailed behavior of RBC under a shear flow is studied with 
the possibility of revealing tumbling and swinging motions of 
a red blood cell under different shear conditions. The effect 
of different initial orientations of the RBC on these types of 
motions is also studied in detail.

2- Numerical Method
As an alternative to Navier-Stokes solvers, lattice Boltzmann 
Method (LBM) has been used for simulation of three-
dimensional fluid flows, including RBC in a shear flow 
[13,20,21]. RBC is covered by a deformable solid membrane; 
its deformation can be modeled using finite element method, 
from which, membrane forces due to the deformation can be 
obtained. In order to simulate the hydrodynamic interactions 
between fluid and membrane, the immersed-boundary 
method can be used. These three methods which are used in 
the present study are described in more detail as follows.

2- 1- Lattice Boltzmann method
The lattice Boltzmann equation, which is a discretized form 
of the Boltzmann equation, with the BGK model reads as

( , ) ( , )
1 [ ( , ) ( , )]eq

f x e t t t f x t

f x t f x t t F

α α α

α α α

δ δ

δ
τ

+ + − =

− − + (1)

It is obtained from the discretization of Boltzmann equation 
in phase space using second-order upwind scheme in space 
on a uniform mesh and a first order explicit Euler scheme 
in time. Here, fα(x,t) is velocity distribution function in αth 

discrete velocity direction, x is the spatial position vector, t 
is time, fα

eq(x,t) is equilibrium velocity distribution function, 
Fα is the external force and τ is the relaxation time, which is 
related to the fluid viscosity as v=(τ-0.5)cs

2δt . Here cs is the 
lattice speed of sound and is equal to c/√3. D3Q19 model 
has been employed for discretization of the velocity vector as 
shown in Fig. 1.

Fluid particles can move in nineteen different directions in 
D3Q19 with discrete velocities defined as:
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where c = δx/δt is the lattice speed. Equilibrium distribution 
function, fα

eq(x,t), is obtained from:
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Coefficients ωα are weighting factors, which are defined as 
ω0=1/3, ωα=1/18 for α = 1 to 6 and ωα=1/36 for α = 7 to 18 
in D3Q19  model. 
External force term in LB equation can be implemented in 
different ways. In the present study, the proposed method 
of Luo [25] is used in which, the force term is added to 
the collision term as Fα=-3ωαρeα.f/c

2. Here f is the external 
force density at Eulerian nodes which is more discussed in 
sections 2.2 and 2.3. Knowing velocity distribution function, 
macroscopic variables such as density and velocity can be 
obtained as:

,f u e fα α αρ ρ= =∑ ∑ 
(4)

_

Fig. 1. D3Q19 model
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2- 2- Membrane model
2- 2- 1- Membrane discretization
The first step in modeling membrane deformation is its 
discretization in the form of small elements. Here triangular 
elements were created on the surface of RBC membrane 
through mapping of a discretized spherical surface. 
Discretization of the sphere starts with a regular icosahedron 
which has 12 nodes and 20 equilateral triangles (Fig. 2(a)) 
and its subsequent subdivision. This approach which has 
been used by Ramanujan and Pozrikidis [8], Sui et al. [13] 
and Kruger et al. [14] is able to produce a homogeneous 
mesh of higher orders on a spherical membrane. Subdivision 
procedure consists of two steps: (a) creating additional nodes 
in the middle of each side of a triangle (Fig. 2(b)) and (b) 
radial projection of those nodes on the surface of a sphere 
(Fig. 2(c)).

This procedure is repeated until the desired resolution on 
the surface of the sphere is obtained (Fig. 2(d)). The number 
of nodes and elements cannot be selected as optional in 
each subdivision since the required number of nodes for 
Ne elements is 2Ne+2 and the number of faces varies  from 
Ne,0=20 (a regular icosahedron) to Ne,n = 4n Ne,0 after n times 
of subdivision. 
In order to produce red blood cells with triangular elements, 
one can use an appropriate mapping system from the surface 
of a sphere to the surface of a red blood cell. The red blood 
cells can be considered as a biconcave disk shape at rest that 
has an analytical form as [12, 26]

( )2 2 4
0 0 0 2 4 0, 0.5 1 ,x R x y R r C C r C r z R z′ ′= = − + + = (5)

where r2=x′2+y′2. In these equations  x, y, z are the coordinates 
of the cell surface of an RBC, x′, y′, z′  are the coordinates of 
a unit sphere, R0 is a constant to preserve the volume, the Ci 
coefficients (i = 0, 2, 4) are determined experimentally as 
0.207, 2.003 and -1.123, respectively. The above equations 
can be used as a mapping system which map each vertex on 

the surface of a sphere to a specific vertex on the surface of 
the red blood cell. The discretized surface of a sphere and a 
red blood cell and their cross-sections in the plane of shear 
are shown in Fig. 3. Fig. 3(c) shows four sample points 1, 2, 
3 and 4 on the sphere which are mapped to 1′, 2′, 3′ and 4′ on 
the RBC, Fig. 3d.

2- 2- 2- Finite element method
In the present study, the finite element method developed by 
Charrier et al. [27] and Shrivastava and Tang [28] is employed 
to find the force and deformation of each node on the surface 
of RBC. The main idea in their methods is that the triangular 
elements on the surface of the membrane are flat and remain 
flat even after deformation. Therefore, only the in-plane 
stresses are considered. In other words, undeformed and its 
corresponding deformed element can be represented on a 
plane for which, a planar deformation analysis is sufficient to 
obtain a deformation of the element. 
One important issue in finite element analysis of RBC 
membrane is using an appropriate constitutive equation, 
which describes the membrane properties accurately. Skalak 
et al. [24] proposed a constitutive equation, denoted by SK, 
which is appropriate for describing the elastic behavior of 
the red blood cell. His analysis was based on the fact that 
a red blood cell tends to deform easily at the constant area. 
In this model, the resistance of membrane to area changes is 
represented by a coefficient C in its equation which is written 
as follows:

( ) ( )24 4 2 2 2 2
1 2 1 2 1 22 2 2 1

12
SK sE

W Cλ λ λ λ λ λ = + − − + + −  (6)

In this equation, Es is the surface shear elasticity modulus 
and λ1 and λ2 are the principal stretch ratios. The first term 
on the right-hand side of the above equation describes the 
shear effects and the second term represents the area dilation. 

Fig. 2. Generating triangular elements on the surface of 
a sphere: (a) a regular icosahedron, (b) split each face of 

icosahedron, (c) project each new vertex on the surface of the 
sphere, (d) a sphere with 162 nodes/ 320 elements

Fig. 3. The discretized surface of (a) a sphere and (b) a red 
blood cell. Cross-section of a (c) a sphere and (d) a red blood 
cell in the plane of shear and some specified vertices that are 

mapped
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A membrane with zero change in area is obtained if C 
approaches infinity. 
In order to determine the nodal displacements with
respect to the undeformed configuration, nodal position 
vectors of deformed and undeformed configurations in 
the same plane (i.e. deformed plane) are compared based 
on a local coordinate system attached to elements. Using 
such coordinate system, local coordinate vectors, and local 
displacements in x and y direction (uL, vL) can be obtained for 
each vertex. The nodal forces on the vertices are obtained by 
using the principle of virtual work and a suitable constitutive 
equation (Eq. (6)): 
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{ }
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1 2

1 2
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(7)

where Ve is the original volume of the element. The nodal 
forces in local axis are transformed to the global coordinate, 
and the Lagrangian forces F(s,t) needed in the immersed 
boundary method are obtained by the summation of resultant 
forces from all elements around the node. More details of this 
procedure can be found in Refs. [27, 28].

2- 3- Immersed boundary method
In general, RBC is modeled as a liquid-filled capsule 
surrounded by a thin elastic membrane. In order to determine 
the interaction between RBC and its surrounding shear flow, 
the immersed boundary method [29] is employed. In this 
method, forces exerted by the membrane are described as a 
distribution of regularized point forces. Considering a fixed 
Eulerian grid represented as ‘x’, conservation equations are 
solved for fluid inside and outside of the membrane while 
the membrane is tracked using Lagrangian grid points 
X(s,t), see Fig. 4. At each time step, Lagrangian forces F(s,t) 
are computed at each membrane node using finite element 
method (section 2.2) and are distributed on the Eulerian 
points by the Dirac delta function interpolation:

( , ) ( , ) ( ( , ))
s

f x t F s t x X s tδ= −∑ (8)

For three-dimensional cases, the discrete delta function can 
be written as,

( ( , )) ( ( , )) ( ( , )) ( ( , ))x X s t x X s t y Y s t z Z s tδ δ δ δ− = − − − (9)

where,

1 1
( )

0
r r

r
otherwise

δ
 − ≤

= 


(10)

The same interpolation function used in Eq. (8) is employed 
to obtain new velocities of Lagrangian nodes from the local 
fluid velocities, u(x,t):

( , ) ( , ) ( ( , ))
x

U s t u x t x X s tδ= −∑ (11)

No-slip boundary condition is satisfied by equating 
membrane-node velocity with velocity obtained from its 

adjacent fluid nodes:

( , ) ( ( , ) , )X s t u X s t t
t

∂
=

∂
(12)

Using the above equation, new positions of the membrane 
nodes are  obtained by using an explicit Euler method 
resulting in: X(s,t+Δt)=X(s,t)+U(s,t)Δt.

2- 4- Solution algorithm
The solution algorithm at each time step for the present 
combined method consists of the following steps.
1.	 Using initial known macroscopic fluid properties and 

membrane node positions, Lagrangian forces F(s,t) are 
obtained using FEM (rf. Section 2.2). 

2.	 Using Eq. (8), Lagrangian forces are spread to the 
Eulerian grids, and Eulerian force density is obtained. 

3.	 LB equation with the Eulerian force density as a source 
term is solved to update flow field, section 2.1. 

4.	 The new velocities and positions of membrane nodes are 
computed using Eqs. (11) and (12).

5.	 Computations are  repeated through step 1 to reach the 
desired time step.   

Convergence criteria were selected as having a constant value 
for a parameter of interest in a steady flow and corresponding 
values for a parameter of interest in two consecutive periods.

3- Results and Discussion
Computations are carried out to simulate an initially 
biconcave discoid, which can be considered as a red blood 
cell at rest, in the simple shear flow with velocity Vs=(γy,0,0) 
in which γ is the shear rate and y is the distance from the 
center of the computational domain. As shown in Fig. 5, the 
simulations are performed in a cubic computational domain 
of length 10R. R is the equivalent radius of the membrane and 
is defined as R = (3V/4π)1/3, where V is the volume of RBC. 
The upper and lower solid boundaries of the computational 
domain move in opposite directions, while periodic boundary 
conditions are implemented for remaining boundaries. 
Unstressed RBC is located at the center of the domain with 

Fig. 4. Schematic diagram showing fluid Eulerian and 
membrane Lagrangian points

.
.

→
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initial inclination angle θ = π/4 with the flow direction. A 
Newtonian fluid is considered to fill the entire computational 
domain, which covers both inside and outside of the RBC. 
Assuming a very thin membrane for the RBC, its bending 
stiffness has been neglected in the present computations. 
The dimensionless parameters that play important roles in 
membrane deformation are Reynolds number, Re=ργR2/μ, 
and dimensionless shear rate, G=μγR/Es. Here, ρ and μ 
are the density and dynamic viscosity of surrounding fluid 
respectively. Es is the membrane shear elasticity. Simulations 
are performed at low Reynolds number, which corresponds to 
Stokes flow regime. 
Transient deformation of RBC can be measured by Taylor 
deformation parameter Dxy. As Ramanujan and Pozrikidis [8] 
proposed, this parameter is defined as Dxy=(L1-L2)/(L1+L2), 
where L1 and L2 are major and minor semi-axes of RBC. 
Fig. 5 shows these lengths and inclination angle of RBC, θ, 
which is the angle between the major semi-axes and the flow 
direction.

In order to choose a membrane grid resolution with a 
sufficient accuracy, the time evolution of Taylor deformation 

parameter is computed and compared for different grid 
resolutions in Fig. 6. In Fig. 6, t* is the dimensionless time 
defined as γt. The required time for one complete iteration 
at each resolution is also presented in Table 1. It should be 
mentioned that these computations were performed on a 
Core-i7/2.4 GHz processor. As is observed from Fig. 6, the 
plots of Taylor parameters  nearly correspond to each other 
in the cases of 2562 nodes (5120 elements) and 10242 nodes 
(20480 elements). The discrepancy of these plots with those 
obtained for 162 nodes (320 elements) and 642 nodes (1280 
elements) are clearly observed. On the other hand, Table 1 
shows that computational time of one iteration for the case 
with 10242 nodes is twice the required time for the case with 
2562 nodes. Therefore, a membrane grid resolution with 5120 
flat triangular elements connecting 2562 membrane nodes is 
chosen for the present computations.

3- 1- Validation
Ramanujan and Pozrikidis [8] modeled the deformation of 
a three-dimensional biconcave capsule using the boundary 
element method. However, due to the complex geometry and 
instabilities in their numerical computations, their results 
were presented for an initial short duration of time. Fig. 7 
shows a comparison of Taylor deformation parameter, Dxy, and 
inclination angle, θ, versus time with those of Ramanujan and 
Pozrikidis [8]. A close agreement between present results and 
those of Ramanujan and Pozrikidis [8] reveals the accuracy of 
the computational method used in the present computations. 
Figs. 7 to 9 represent deformation parameter, inclination 
angle, and streamlines as well as transient deformations of 
an RBC at different instances for G = 0.2. As is observed in 
these figures, when RBC is exposed to shear flow, it starts 

.
.

(a)

(b)
Fig. 5. (a) Schematic diagram of the computational domain, 

and (b) cross-section of RBC in the plane of shear with major 
and minor semi-axes L1 and L2, and inclination angle with the 

flow direction θ

.

Case CPU time
320 elements, 162 nodes 0.028
1280 elements, 642 nodes 0.032
5120 elements, 2562 nodes 0.04

20480 elements, 10242 nodes 0.08

Table 1. The required time for one complete iteration in 
different grid resolution

Fig. 6. Time variation of deformation parameter for different 
membrane grid resolutions at G = 0.025
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to deform and elongate while its inclination angle decreases 
with the flow direction. Moreover, dimples are smoothed 
out with time and a nearly ellipsoid shape is formed. Nodal 
points of the membrane would have tangential velocity after 
the transient initial period (no normal velocity) which makes 
the membrane to rotate clockwise around the interior fluid.

3- 2- Tumbling motion of RBC
At small shear rates, RBC undergoes an unsteady rigid-body-
like motion such that it can be considered as a rigid particle 
rotating in a fluid. In order to study the characteristics of 
this type of motion, computations are repeated for low shear 
rates. Fig. 10 presents a temporal evaluation of inclination 
angle of a marker point and the deformation parameter at 
small dimensionless shear rates ranging from G=0.0005 
to G=0.005. The deformation parameter undergoes non-
decaying oscillations with a constant amplitude. At very small 
shear rates, i.e. G = 0.0005 to 0.001, deformation parameter 
is not sensitive to a variation of shear rate and RBC shows 
similar behaviors. As the dimensionless shear rate increases, 

the amplitude of the oscillations decreases slightly. 
Fig. 11 shows progressive 2D profiles of the RBC in the plane 
of shear with a specific marker point. The characteristics  of 
the tumbling motion is RBC’s experience of an unsteady 
rigid-like motion along with its continuous rotation in the 
clockwise direction which can be considered as the motion 
of a rigid particle. The 3D profiles of the RBC during the 
tumbling motion at G=0.0005 are represented in Fig. 12. 
These profiles show that RBC appears to buckle or fold 
slightly. This phenomenon reveals the need to implement 
bending stiffness of RBC despite its small value to prevent 
developing wrinkles on the membrane.

3- 3- Swinging motion of RBC
Swinging is another possible mode of motion for RBC in 
a shear flow. Based on the experimental observations of 
Abkarian et al. [6], RBC exposed to the shear flow experiences 
an unsteady mode superimposed to the tank-treading which 
is called swinging mode. In this case, RBC undergoes 
periodic shape deformation and inclination angle, while 
the membrane is rotating around the internal liquid. Fig. 13 
shows the temporal evaluation of deformation parameter and 
inclination angle at large shear rates, ranging from G = 0.87 
to G = 2.3. As illustrated in the figure, during this unsteady 
tank-treading mode, RBC experiences periodic deformation 

(a)

(b)
Fig. 7. Comparison of transient evolution of  (a) deformation 

parameter and (b) inclination angle for a red blood cell in shear 
flow at G = 0.2 with the results of Ramanujan and Pozrikidis[8]

Fig. 8. Flow fields in the plane of shear around a deformed 
RBC for G = 0.2

Fig. 9. Deformation of a red blood cell exposed to a simple 
shear flow at different times, G = 0.2
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and its inclination oscillates periodically. By increasing the 
dimensionless shear rate, the RBC elongates more and aligns 
more with the flow direction.

The progressive cross-section profiles of the RBC at different 
planes and G = 0.87 are represented in Fig. 14. The RBC starts 
to elongate and its alignment changes. The dimples of RBC 
are smoothed out and an ellipsoid-like shape is obtained. The 
membrane rotates around the internal liquid and the material 
points experience unsteady tank-treading motion.

(a)

(b)
Fig. 10. Temporal evaluation of (a) deformation parameter and 
(b) inclination angle of a marker point at small dimensionless 

shear rates

Fig. 11. RBC profiles in the plane of shear at different times 
during the tumbling motion, G = 0.001

Fig. 12. 3D profiles of the red blood cell at G = 0.0005 and 
different times during tumbling

Fig. 13. Temporal evaluation of (a) deformation parameter and 
(b) inclination angle at large shear rates

(a)

(b)
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3- 4- The effect of initial orientation of RBC
In order to investigate the effect of initial orientation on the 
RBC deformation, simulations are repeated for different 
initial angles with the flow direction, namely θ0 = 0º 
(horizontal), θ0 = 45º and θ0 = 90º (vertical). The results for 
G = 0.0025 are illustrated in Fig. 15. It is observed that initial 
orientation of RBC does not change the amplitude and period 
of oscillations of RBC significantly. Regardless of the initial 
orientation, RBC tends to rotate in the clockwise direction. 
The 3D and 2D profiles of the RBC and the marker point at 
different initial orientations at t*= 13.5 and G = 0.0025 are 
represented in Fig. 16. Different orientation angles with the 
flow direction are observed at this specific time. It seems that 
the profiles of RBC are approximately similar to each other 
in spite of their difference in orientation.

4- Conclusion
In this paper, the dynamic behavior of a red blood cell in 
swinging and tumbling modes is studied numerically. Lattice 
Boltzmann method combined with the immersed boundary 
and finite element methods are employed to simulate three-
dimensional deformable red blood cell and its  interaction 
with the background fluid. The numerical scheme is 

firstly validated with the limited results of Ramanujan and 
Pozrikidis [8] which showed an excellent agreement for 
the deformation parameters, including Taylor deformation 
parameter and the inclination angle of the red blood cell. 
At small shear rates, the red blood cell tends to obtain a 
rigid-body-like motion and rotates continuously like a rigid 
particle. Under this condition, non-decaying oscillations with 
constant amplitude are observed in the curves of deformation 
parameter. However, at swinging mode, the red blood cell 
starts to elongate and gradually its dimples are smoothed out 
and deforms into an ellipsoid shape. The material points on 
the surface of the red blood cell rotate around the liquid inside 
and a periodic deformation and inclination angle is observed. 
It is  also concluded that the present results are not sensitive 
to the initial orientation of the red blood cell with the flow 
direction.
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