The Effect of Impact Energy Parameters on the Closed-Cell Aluminum Foam Crushing Behavior Using X-Ray Tomography Method

Document Type : Research Article


Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran


 The present study is devoted to the numerical and experimental investigation of the influence of dominant impact parameters, including inertia and impact velocity, on the closed-cell aluminum foam behavior. In order to access 3D modeling of the internal microstructure of the foam samples, a new technique based on computerized tomography (CT) of 2D images is utilized. The influence of the abovementioned influential parameters is studied for three different foam densities. In order to validate finite element results, low-velocity impact tests were conducted. The results demonstrate that for a constant level of impactor energy, two primary impact quantities of interest, i.e. maximum stress and energy absorption, are highly dependent on the values of impactor momentum. In contrast, increasing the value of impactor inertia results in negligible variations of energy absorption for different foam densities. Similarly, increasing inertia at a constant foam density shows no significant variation in peak stress and a slight change in energy absorption. On the other hand, the velocity of impactor at a constant level of impactor energy plays a crucial role such that for all three different foam sample densities, the case of higher impactor velocity causes greater values of peak stress as well as energy absorption.


[1] T. Miyoshi, M. Itoh, S. Akiyama, A. Kitahara, ALPORAS Aluminum Foam: Production Process, Properties, and Applications, Advanced Engineering Materials, 2(4) (2000) 179–183.
[2] S. Akiyama, H. Ueno, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishikawa, M. Itoh, Foamed metal and method of producing same, US Patent 4.713.277, 1987.
[3] S. Akiyama, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishikawa, M. Itoh, European Patent Application 0.210.803 A1, 1986.
[4] J.C. Elliot, US Patent 2.983.597, 1961.
[5] W.S. Fiedler, US Patent 3.214.265, 1965.
[6] P.W. Hardy, G.W. Peisker, US Patent 3.300.296, 1967.
[7] J. Bjorksten, E.J. Rock, US Patent 3.707.367, 1972.
[8] C.B. Berry, US Patent 3.669.654, 1972.
[9] J. Weber, German Patent Application 3.516.737, 1986.
[10] M. Peroni, G. Solomos, V. Pizzinato, Impact behaviour testing of aluminium foam, International Journal of Impact Engineering, 53 (2013) 74−83.
[11] J. Banhart, Manufacture, characterisation, and application of cellular metals and metal foams, Progress in Materials Science, 46(6) (2001) 559–632.
[12] M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley. Metal foams: a design guide, 1st edition, Butterworth-Heinemann, 2000.
[13] A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, H.M.G. Wadley, The topological design of multifunctional cellular metals, Progress in Materials Science, 46(3-4) (2001) 309–327.
[14] R. Singh, P.D. Lee, T.C. Lindley, C. Kohlhauser, C. Hellmich, M. Bram, T. Imwinkelried, R.J. Dashwood, Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling, Acta Biomaterialia, 6(6) (2010) 2342–2351.
[15] R. Rajendran, A. Moorthi, S. Basu, Numerical simulation of drop weight impact behaviour of closed cell aluminium foam, Materials and Design, 30 (2009) 2823–2830.
[16] Y. Song, Z. Wang, L. Zhao, J. Luo, Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model, Materials and Design, 31 (2010) 4281–4289.
[17] Y. Liu, W. Gong, X. Zhang, Numerical investigation of influences of porous density and strain-rate effect on dynamical responses of aluminum foam, Computational Materials Science, 91(2014) 223-230.
[18] Q. Fang, J. Zhang, Y. Zhang, J. Liu, Z. Gong, Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact, Composite Structures. 124 (2015) 409-420.
[19] B. Li, G. Zhao, T. Lu, Low strain rate compressive behavior of high porosity closed-cell aluminum foams, Science China Technological Sciences, 55(2) (2012) 451-463.
[20] M.J. Nayyeri, S.M.H. Mirbagheri, D.H. Fatmehsari, Compressive behavior of tailor-made metallic foams (TMFs): Numerical simulation and statistical modeling, Materials and Design, 84 (2015) 223–230.
[21] P. Wang, S. Xu, Z. Li, J. Yang, C. Zhan, H. Zheng, S. Hu, Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading, Materials Science and Engineering: A, 620 (2015) 253-261.
[22] S. Birla, D.P. Mondal, S. Das, A. Khare, J. P. Singh, Effect of cenosphere particle size and relative density on the compressive deformation behavior of aluminum-cenosphere hybrid foam, Materials and Design, 117 (2017) 168–177.
[23] L. Li, P. Xue, G. Luo, A Numerical Study on Deformation Mode and Strength Enhancement of Metal Foam under Dynamic Loading, Materials and Design, 110 (2016) 72–79.
[24] H. Toda, T. Ohgaki, K. Uesugi, K. Makii, Y. Aruga, T. Akahori, M. Niinomi, T. Kobayashi, In situ observation of fracture of aluminium foam using synchrotron X-ray micro tomography, Key Engineering Materials, 297-300 (2005) 1189-1195.
[25] H. Toda, M. Takata, T. Ohgaki, M. Kobayashi, T. Kobayashi, K. Uesugi, K. Makii, Y. Aruga, 3-D image-based mechanical simulation of aluminium foams: effects of internal microstructure, Advanced Engineering Materials, 8(6) (2006) 459-467.
[26] H. Toda, I. Sinclair, J.Y. Buffière, E. Maire, K.H. Khor, P. Gregson, T. Kobayashi, A 3D measurement procedure for internal local crack driving forces via synchrotron X-ray microtomography, Acta Materialia, 52(5) (2004) 1305-1317.
[27] A. Sassov, E. Cornelis, D. Van Dyck, Non-destructive 3D Investigation of Metal Foam Microstructure, Materialwissenschaft and Werkstofftechnik, 31(6) (2000) 571-573.
[28] T. Ohgaki, H. Toda, M. Kobayashi, K. Uesugi, T. Kobayashi, M. Niinomi, T. Akahori, K. Makii, Y. Aruga, In-situ High-resolution X-ray CT Observation of Compressive and Damage Behaviour of Aluminium Foams by Local Tomography Technique, Advanced Engineering Materials. 8(6) (2006) 473-475.
[29] Y. Liu, W. Gong, X. Zhang, Numerical investigation of influences of porous density and strain-rate effect on dynamical responses of aluminum foam, Computational Materials Science. 91 (2014) 223-230.
[30] A. Elmoutaouakkil, L. Salvo, E. Maire, G. Peix, 2D and 3D Characterization of Metal Foams Using X-ray Tomography, Advanced Engineering Materials, 4(10) (2002) 803-807.
[31] C. Veyhl, I. V. Belova, G. E. Murch, T. Fiedler, Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography, Materials Science and Engineering: A, 528(13-14) (2011) 4550-4555.
[32] J.F. Ramírez, M. Cardona, J.A. Velez, I. Mariaka, J.A. Isaza, E. Mendoza, S. Betancourt, P. Fernández-Morales, Numerical modeling and simulation of uniaxial compression of aluminum foams using FEM and 3D-CT images, Procedia Materials Science, 4 (2014) 227-231.
[33] M.A. Kader, M.A. Islam, M. Saadatfar, P.J. Hazell, A.D. Brown, S. Ahmed, J.P. Escobedo, Macro and micro collapse mechanisms of closed-cell aluminium foams during quasi-static compression, Materials and Design, 118 (2017) 11–21.
[34] D. Miedzińska, T. Niezgoda, R. Gieleta, Numerical and experimental aluminum foam microstructure testing with the use of computed tomography, Computational Materials Science, 64 (2012) 90-95.
[35] C. Petit, E. Maire, S. Meille, J. Adrien, Two-scale study of the fracture of an aluminum foam by X-ray tomography and finite element modeling, Materials and Design, 120 (2017) 117–127.
[36] M. Saadatfar, M. Mukherjee, M. Madadi, G.E. Schröder-Turke, F. Garcia-Morenoc, d, F.M. challere, S. Hutzlerb, A.P. Shepparda, J. Banhartc, d, U. Ramamurty. Structure and deformation correlation of closed-cell aluminium foam subject to uniaxial compression, Acta Materialia, 60(8) (2012) 3604−3615.
[37] Y. Sun, Q.M. Li, T. Lowe, S.A. McDonald, P.J. Withers, Investigation of strain-rate effect on the compressive behaviour of closed-cell aluminium foam by 3D image-based modelling, Materials and Design, 89 (2016) 215–224.
[38] J. Kadkhodapour, S. Raeisi. Micro–macro investigation of deformation and failure in closed-cell aluminum foams, Computational Materials Science, 83 (2014) 137–148.
[39] H. Hatami, M. Damghani Nouri, Experimental and numerical investigation of lattice-walled cylindrical shell under low axial impact velocities, Latin American Journal of Solids and Structures, 12 (2015) 1950-1971.
[40] H. Hatami, M. Shokri Rad, A. Ghodsbin Jahromi, A theoretical analysis of the energy absorption response of expanded metal tubes under impact loads, International Journal of Impact Engineering, 109 (2017) 224-239.
[41] A. Ghodsbin Jahromi, H. Hatami, Energy absorption performance on multilayer expanded metal tubes under axial impact, Thin-Walled Structures, 116 (2017) 1-11.
[42] T. Miyoshi, M. Itoh, S. Akiyama, A. Kitahara, ALPORAS Aluminum Foam: Production Process, Properties, and Applications, Advanced Engineering Materials, 2(4) (2000) 179-183.
[43] S. Akiyama, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishizawa, M. Itoh, US Patent 4.713.277, 1987.
[44] T. Miyoshi, S. Hara, T. Mukai, K. Higashi, Development of a closed cell aluminium alloy foam with enhancement of the compressive strength, Materials Transactions, 42(10) (2001) 2118-2123.
[45] X.Y. Su, T.X. Yu, S.R. Reid, Inertia-sensitive impact energy absorbing structures part II: effect of strain rate, Int. J. Impact Eng, 16(4) (1995) 673–689.