[1] T. Miyoshi, M. Itoh, S. Akiyama, A. Kitahara, ALPORAS Aluminum Foam: Production Process, Properties, and Applications, Advanced Engineering Materials, 2(4) (2000) 179–183.
[2] S. Akiyama, H. Ueno, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishikawa, M. Itoh, Foamed metal and method of producing same, US Patent 4.713.277, 1987.
[3] S. Akiyama, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishikawa, M. Itoh, European Patent Application 0.210.803 A1, 1986.
[4] J.C. Elliot, US Patent 2.983.597, 1961.
[5] W.S. Fiedler, US Patent 3.214.265, 1965.
[6] P.W. Hardy, G.W. Peisker, US Patent 3.300.296, 1967.
[7] J. Bjorksten, E.J. Rock, US Patent 3.707.367, 1972.
[8] C.B. Berry, US Patent 3.669.654, 1972.
[9] J. Weber, German Patent Application 3.516.737, 1986.
[10] M. Peroni, G. Solomos, V. Pizzinato, Impact behaviour testing of aluminium foam, International Journal of Impact Engineering, 53 (2013) 74−83.
[11] J. Banhart, Manufacture, characterisation, and application of cellular metals and metal foams, Progress in Materials Science, 46(6) (2001) 559–632.
[12] M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley. Metal foams: a design guide, 1st edition, Butterworth-Heinemann, 2000.
[13] A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, H.M.G. Wadley, The topological design of multifunctional cellular metals, Progress in Materials Science, 46(3-4) (2001) 309–327.
[14] R. Singh, P.D. Lee, T.C. Lindley, C. Kohlhauser, C. Hellmich, M. Bram, T. Imwinkelried, R.J. Dashwood, Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling, Acta Biomaterialia, 6(6) (2010) 2342–2351.
[15] R. Rajendran, A. Moorthi, S. Basu, Numerical simulation of drop weight impact behaviour of closed cell aluminium foam, Materials and Design, 30 (2009) 2823–2830.
[16] Y. Song, Z. Wang, L. Zhao, J. Luo, Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model, Materials and Design, 31 (2010) 4281–4289.
[17] Y. Liu, W. Gong, X. Zhang, Numerical investigation of influences of porous density and strain-rate effect on dynamical responses of aluminum foam, Computational Materials Science, 91(2014) 223-230.
[18] Q. Fang, J. Zhang, Y. Zhang, J. Liu, Z. Gong, Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact, Composite Structures. 124 (2015) 409-420.
[19] B. Li, G. Zhao, T. Lu, Low strain rate compressive behavior of high porosity closed-cell aluminum foams, Science China Technological Sciences, 55(2) (2012) 451-463.
[20] M.J. Nayyeri, S.M.H. Mirbagheri, D.H. Fatmehsari, Compressive behavior of tailor-made metallic foams (TMFs): Numerical simulation and statistical modeling, Materials and Design, 84 (2015) 223–230.
[21] P. Wang, S. Xu, Z. Li, J. Yang, C. Zhan, H. Zheng, S. Hu, Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading, Materials Science and Engineering: A, 620 (2015) 253-261.
[22] S. Birla, D.P. Mondal, S. Das, A. Khare, J. P. Singh, Effect of cenosphere particle size and relative density on the compressive deformation behavior of aluminum-cenosphere hybrid foam, Materials and Design, 117 (2017) 168–177.
[23] L. Li, P. Xue, G. Luo, A Numerical Study on Deformation Mode and Strength Enhancement of Metal Foam under Dynamic Loading, Materials and Design, 110 (2016) 72–79.
[24] H. Toda, T. Ohgaki, K. Uesugi, K. Makii, Y. Aruga, T. Akahori, M. Niinomi, T. Kobayashi, In situ observation of fracture of aluminium foam using synchrotron X-ray micro tomography, Key Engineering Materials, 297-300 (2005) 1189-1195.
[25] H. Toda, M. Takata, T. Ohgaki, M. Kobayashi, T. Kobayashi, K. Uesugi, K. Makii, Y. Aruga, 3-D image-based mechanical simulation of aluminium foams: effects of internal microstructure, Advanced Engineering Materials, 8(6) (2006) 459-467.
[26] H. Toda, I. Sinclair, J.Y. Buffière, E. Maire, K.H. Khor, P. Gregson, T. Kobayashi, A 3D measurement procedure for internal local crack driving forces via synchrotron X-ray microtomography, Acta Materialia, 52(5) (2004) 1305-1317.
[27] A. Sassov, E. Cornelis, D. Van Dyck, Non-destructive 3D Investigation of Metal Foam Microstructure, Materialwissenschaft and Werkstofftechnik, 31(6) (2000) 571-573.
[28] T. Ohgaki, H. Toda, M. Kobayashi, K. Uesugi, T. Kobayashi, M. Niinomi, T. Akahori, K. Makii, Y. Aruga, In-situ High-resolution X-ray CT Observation of Compressive and Damage Behaviour of Aluminium Foams by Local Tomography Technique, Advanced Engineering Materials. 8(6) (2006) 473-475.
[29] Y. Liu, W. Gong, X. Zhang, Numerical investigation of influences of porous density and strain-rate effect on dynamical responses of aluminum foam, Computational Materials Science. 91 (2014) 223-230.
[30] A. Elmoutaouakkil, L. Salvo, E. Maire, G. Peix, 2D and 3D Characterization of Metal Foams Using X-ray Tomography, Advanced Engineering Materials, 4(10) (2002) 803-807.
[31] C. Veyhl, I. V. Belova, G. E. Murch, T. Fiedler, Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography, Materials Science and Engineering: A, 528(13-14) (2011) 4550-4555.
[32] J.F. Ramírez, M. Cardona, J.A. Velez, I. Mariaka, J.A. Isaza, E. Mendoza, S. Betancourt, P. Fernández-Morales, Numerical modeling and simulation of uniaxial compression of aluminum foams using FEM and 3D-CT images, Procedia Materials Science, 4 (2014) 227-231.
[33] M.A. Kader, M.A. Islam, M. Saadatfar, P.J. Hazell, A.D. Brown, S. Ahmed, J.P. Escobedo, Macro and micro collapse mechanisms of closed-cell aluminium foams during quasi-static compression, Materials and Design, 118 (2017) 11–21.
[34] D. Miedzińska, T. Niezgoda, R. Gieleta, Numerical and experimental aluminum foam microstructure testing with the use of computed tomography, Computational Materials Science, 64 (2012) 90-95.
[35] C. Petit, E. Maire, S. Meille, J. Adrien, Two-scale study of the fracture of an aluminum foam by X-ray tomography and finite element modeling, Materials and Design, 120 (2017) 117–127.
[36] M. Saadatfar, M. Mukherjee, M. Madadi, G.E. Schröder-Turke, F. Garcia-Morenoc, d, F.M. challere, S. Hutzlerb, A.P. Shepparda, J. Banhartc, d, U. Ramamurty. Structure and deformation correlation of closed-cell aluminium foam subject to uniaxial compression, Acta Materialia, 60(8) (2012) 3604−3615.
[37] Y. Sun, Q.M. Li, T. Lowe, S.A. McDonald, P.J. Withers, Investigation of strain-rate effect on the compressive behaviour of closed-cell aluminium foam by 3D image-based modelling, Materials and Design, 89 (2016) 215–224.
[38] J. Kadkhodapour, S. Raeisi. Micro–macro investigation of deformation and failure in closed-cell aluminum foams, Computational Materials Science, 83 (2014) 137–148.
[39] H. Hatami, M. Damghani Nouri, Experimental and numerical investigation of lattice-walled cylindrical shell under low axial impact velocities, Latin American Journal of Solids and Structures, 12 (2015) 1950-1971.
[40] H. Hatami, M. Shokri Rad, A. Ghodsbin Jahromi, A theoretical analysis of the energy absorption response of expanded metal tubes under impact loads, International Journal of Impact Engineering, 109 (2017) 224-239.
[41] A. Ghodsbin Jahromi, H. Hatami, Energy absorption performance on multilayer expanded metal tubes under axial impact, Thin-Walled Structures, 116 (2017) 1-11.
[42] T. Miyoshi, M. Itoh, S. Akiyama, A. Kitahara, ALPORAS Aluminum Foam: Production Process, Properties, and Applications, Advanced Engineering Materials, 2(4) (2000) 179-183.
[43] S. Akiyama, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishizawa, M. Itoh, US Patent 4.713.277, 1987.
[44] T. Miyoshi, S. Hara, T. Mukai, K. Higashi, Development of a closed cell aluminium alloy foam with enhancement of the compressive strength, Materials Transactions, 42(10) (2001) 2118-2123.
[45] X.Y. Su, T.X. Yu, S.R. Reid, Inertia-sensitive impact energy absorbing structures part II: effect of strain rate, Int. J. Impact Eng, 16(4) (1995) 673–689.