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a  considerable effect on energy absorption and peak stress. It 
is also clear that the foam density had no remarkable effect on 
the energy absorption but in both cases, the  increase in foam 
density led to the increase in the peak stress.
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4- Conclusion
In this paper, the effect of inertia and impact velocity as 
energy parameters on the closed-cell Alporas aluminum foam 
behavior are investigated. First, the three-dimensional models 
of the aluminum foam were created via the CT scan method. 
Then, the model was analyzed under low-velocity impact 
test via LS-DYNA software. The results of the finite element 
method are compared with the experimental results and it is 

concluded that the numerical method shows a high accuracy. 
After that, the effect of important parameters, including the 
inertia, velocity of impactor and foam density on the impact 
response is investigated. The results show that at a constant 
level of impact velocity, increasing inertia has no effect on 
peak stress and also slightly increases energy absorption. 

Density, 
kg/m3

Impactor 
Weight, kg

Peak Stress, 
MPa

Energy Absorption, 
kJ/m3

224 14 13.75 1585.2
30 13.75 1594.4
60 13.75 1594.0
120 13.76 1599.3

319 14 21.62 1553.9
30 21.94 1555.4
60 21.95 1559.6
120 21.95 1563.2

557 14 25.56 1534.6
30 25.98 1534.2
60 25.99 1550.8
120 25.99 1561.5

Table 2. The effect of impact inertia on the impact response of 
closed-cell aluminum foam

Fig. 8. The effect of impact inertia versus impact velocity for 
three different foam densities:

(a) 224 kg/m3 (b) 319 kg/m3 (c) 557 kg/m3

Foam 
Density, 
kg/m3

Energy Parameters
Peak Stress, 

MPa

Energy 
Absorption, 

kJ/m3

Initial 
Velocity, 

m/s

Impactor 
Weight, 

kg

224 10 60 13.75 1594.0
20 15 36.47 2480.5

Δ1 =165.2% Δ2 =55.6%
319 10 60 21.95 1559.6

20 15 46.27 2650.0
Δ1 =110.8% Δ2 =69.9%

557 10 60 25.99 1550.8
20 15 74.16 2665.8

Δ1 =185.3% Δ2 =71.9%

Table 3. The effect of inertia and impact velocity on the impact 
response of closed-cell aluminum foam at constant energy
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