[1] H. Dawood, H. Mohammed, N.A.C. Sidik, K. Munisamy, M. Wahid, Forced, natural and mixed-convection heat transfer and fluid flow in annulus: A review, International Communications in Heat and Mass Transfer, 62 (2015) 45-57.
[2] T. Kuehn, R. Goldstein, An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders, Journal of Fluid mechanics, 74(4) (1976) 695-719.
[3] T.H. Kuehn, R. Goldstein, An experimental study of natural convection heat transfer in concentric and eccentric horizontal cylindrical annuli, Journal of Heat Transfer, 100(4) (1978) 635-640.
[4] T.H. Kuehn, R.J. Goldstein, A parametric study of Prandtl number and diameter ratio effects on natural convection heat transfer in horizontal cylindrical annuli, Journal of Heat Transfer, 102(4) (1980) 768-770.
[5] G. Guj, F. Stella, Natural convection in horizontal eccentric annuli: numerical study, Numerical Heat Transfer, Part A: Applications, 27(1) (1995) 89-105.
[6] F. Shahraki, Modeling of buoyancy-driven flow and heat transfer for air in a horizontal annulus: effects of vertical eccentricity and temperature-dependent properties, Numerical Heat Transfer: Part A: Applications, 42(6) (2002) 603-621.
[7] S. Succi, S. Succi, The lattice Boltzmann equation: for fluid dynamics and beyond, Oxford university press, 2001.
[8] Z. Guo, C. Shu, Lattice Boltzmann method and its applications in engineering, World Scientific, 2013.
[9] C.K. Aidun, J.R. Clausen, Lattice-Boltzmann method for complex flows, Annual review of fluid mechanics, 42 (2010) 439-472.
[10] X. He, S. Chen, G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, Journal of Computational Physics, 146(1) (1998) 282-300.
[11] X. Shan, Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method, Physical Review E, 55(3) (1997) 2780.
[12] Y. Wei, H.-S. Dou, Z. Wang, Y. Qian, W. Yan, Simulations of natural convection heat transfer in an enclosure at different Rayleigh number using lattice Boltzmann method, Computers & Fluids, 124 (2016) 30-38.
[13] Y. Peng, Y. Chew, C. Shu, Numerical simulation of natural convection in a concentric annulus between a square outer cylinder and a circular inner cylinder using the Taylor-series-expansion and least-squares-based lattice Boltzmann method, Physical Review E, 67(2) (2003) 026701.
[14] S. Dash, T. Lee, H. Huang, Natural convection from an eccentric square cylinder using a novel flexible forcing IB-LBM method, Numerical Heat Transfer, Part A: Applications, 65(6) (2014) 531-555.
[15] T. Seta, Implicit temperature-correction-based immersed-boundary thermal lattice Boltzmann method for the simulation of natural convection, Physical Review E, 87(6) (2013) 063304.
[16] Y. Shi, T. Zhao, Z. Guo, Finite difference-based lattice Boltzmann simulation of natural convection heat transfer in a horizontal concentric annulus, Computers & Fluids, 35(1) (2006) 1-15.
[17] E. Sourtiji, D. Ganji, S. Seyyedi, Free convection heat transfer and fluid flow of Cu–water nanofluids inside a triangular–cylindrical annulus, Powder Technology, 277 (2015) 1-10.
[18] M. Afrand, Using a magnetic field to reduce natural convection in a vertical cylindrical annulus, International Journal of Thermal Sciences, 118 (2017) 12-23.
[19] Z. Guo, C. Zheng, B. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method, Physics of Fluids, 14(6) (2002) 2007-2010.
[20] E. Fattahi, M. Farhadi, K. Sedighi, Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus, International journal of thermal sciences, 49(12) (2010) 2353-2362.
[21] C.S. Peskin, Flow patterns around heart valves: a numerical method, Journal of computational physics, 10(2) (1972) 252-271.
[22] X. Niu, C. Shu, Y. Chew, Y. Peng, A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Physics Letters A, 354(3) (2006) 173-182.
[23] Z.-G. Feng, E.E. Michaelides, Proteus: a direct forcing method in the simulations of particulate flows, Journal of Computational Physics, 202(1) (2005) 20-51.
[24] H. Jeong, H. Yoon, M. Ha, M. Tsutahara, An immersed boundary-thermal lattice Boltzmann method using an equilibrium internal energy density approach for the simulation of flows with heat transfer, Journal of Computational Physics, 229(7) (2010) 2526-2543.
[25] S. Jafari, R. Yamamoto, M. Rahnama, Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions, Physical Review E, 83(2) (2011) 026702.
[26] Y. Nakayama, R. Yamamoto, Simulation method to resolve hydrodynamic interactions in colloidal dispersions, Physical Review E, 71(3) (2005) 036707.
[27] Y. Hu, D. Li, S. Shu, X. Niu, An efficient smoothed profile-lattice Boltzmann method for the simulation of forced and natural convection flows in complex geometries, International Communications in Heat and Mass Transfer, 68 (2015) 188-199.
[28] M.-I. Char, Y.-H. Hsu, Comparative analysis of linear and nonlinear low-Reynolds-number eddy viscosity models to turbulent natural convection in horizontal cylindrical annuli, Numerical Heat Transfer, Part A Applications, 33(2) (1998) 191-206.