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Simulation of Natural Convection in Eccentric Annulus: A Combined Lattice 
Boltzmann and Smoothed Profile Approach

S. Jafari1, S. Jafari2*, M. Rahnama1

1 Mechanical Engineering Department, ShahidBahonar university of Kerman, Kerman, Iran
2 Petroleum Engineering Department, ShahidBahonar university of Kerman, Kerman, Iran

ABSTRACT: In the present study, a hybrid method of thermal lattice Boltzmann and smoothed 
profile methods have  been applied to simulate free convection in an eccentric annulus with a constant 
temperature wall. Smoothed profile method employs an Eulerian approach to consider the fluid-solid 
interaction without using an extra mesh for capturing solid boundary. As a result of this property, the 
combination of this method and Lattive Boltzmann method can be considered as an efficient method 
to simulate free convection in complex geometries like annulus. In order to investigate the effect of 
inner cylinder position on the natural convection, the inner cylinder was placed in different horizontal, 
vertical and diagonal positions. Influences of the Rayleigh number (103 ≤ Ra ≤ 105), eccentricity                               
(-0.75 ≤ e ≤ 0.75)) and the radial ratio (Ro /Ri=2, 2.6 and 3.2) on the streamlines, isotherms and Nusselt 
number were studied. It was found that the Nusselt number has a positive relationship with Rayleigh 
number and radial ratio. Also, it can be confirmed that Nusselt number in the case with the negative 
eccentricity (e=−0.75) was larger than the others. It was found that a very good agreement exists between 
the present results and those from the open literature.
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1- Introduction
Forced and natural convections in annulus occur in many 
engineering applications, including nuclear reactor design, 
cooling of electronic equipment and underground electric 
transmission cables using pressurized gas, thermal storage 
systems, aircraft fuselage, solar energy systems [1-6]. It has 
been investigated by various authors both experimentally [1-
4] and numerically [4-6], mainly with the aim of enhancing 
heat transfer between the two cylinders. In a pioneering work, 
an experimental and theoretical study of natural convection 
between the two concentric and eccentric horizontal 
cylinders was performed by Kuhen and Goldsein [2-4]. They 
investigated the effect of Rayleigh number and eccentricity on 
natural convection heat transfer in the annulus. Their results 
are still used by other researchers for validation purposes. 
Guj and Stella [5] performed numerical and experimental 
analysis of buoyancy-driven flow in a horizontal annulus. 
Their numerical simulation was done using finite volume 
method. The effect of horizontal eccentricity was studied in 
their work and they found that the average Nusselt number 
is nearly independent of the horizontal eccentricity. Shahraki 
et al [6] employed penalty finite element method to simulate 
natural convection in an annulus between two vertically 
eccentric pipes with various eccentrics. Moreover, they found 
out when the hot cylinder is placed high in the outer cold 
cylinder (high positive eccentricity), the circulation is slower 
over the annulus and the average Nusselt number decreases. 
As a consequence, the circulation is faster when the hot 
cylinder is positioned low in the cold outer cylinder, the 
average Nusselt number increases. Lattice Boltzmann method 
(LBM) has attracted great  attention in the last decades as 

a novel approach compared to conventional computational 
fluid dynamic [7-9]. Various problems were studied using 
LBM, including natural convection in simple geometries [10-
12]. Some authors studied more complex geometries such as 
natural convection in a cold square enclosure with a heated 
inner circular cylinder [13-16]. LBM has been also extended 
to simulate natural convection of nanofluids in an annulus 
[17]. Moreover, some researchers considered a natural 
convection of nanofluids with magnetic effects [18].
The geometry of concentric annulus with a heated inner 
circular cylinder in a cold circular enclosure was also studied 
in some of them [13,14]. One of the main concerns in these 
geometries is the application of no-slip and no-temperature 
jump at the solid-fluid interface, which requires the local fluid 
velocity and temperature at the boundary to be the same as that 
of the solid boundary. There are various methods available to 
treat the no-slip boundary conditions. The simplest way to do 
this is the standard bounce-back method. The main drawback 
of this boundary condition is the step-wise representation of 
the curved boundary [9]. To overcome this drawback, curved 
boundary condition [19] can be used to implement no-slip 
boundary condition which needs to interpolate between some 
lattice nodes inside and outside of the curved boundary. 
Fattahi et al. [20] presented a numerical simulation of the 
natural convection heat transfer in eccentric annulus based 
on the double population LBM using the curved boundary 
condition. The effect of vertical, horizontal and diagonal 
eccentricity was investigated in their study.  
As the main concern in natural convection, no-slip velocity 
and temperature boundary conditions and their related heat 
flux are required to be implemented to get the correct results. 
Various methods have been proposed to satisfy such boundary 
conditions, among them, Immersed Boundary Method Corresponding author, E-mail: jafari@uk.ac.ir
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(IBM) has been used successfully in many convection heat 
transfer geometries. IBM was first introduced by Peskin [21] 
to model the blood flow in the heart. In the IBM, the fluid 
equations are discretized on a fixed Eulerian grid over the 
entire domain while the immersed boundary is discretized on 
a moving Lagrangian mesh. As both IBM and LBM are based 
on a Cartesian grid, a combination can be readily applied to 
simulations of curved boundary problems. The evaluation of 
the force density at each Lagrangian point can be performed 
by the penalty method [21], the momentum exchange method 
[22], or the direct forcing method [23]. Application of IB-
LBM to thermal phenomena was extended by incorporating 
the IBM into the thermal LBM (TLBM) based on the double 
population approach [15]. In these methods, a source term is 
added to the energy equation as a source term similar to the 
force term in the isothermal method. Similar to isothermal 
problems, the difference between given temperature and 
computed one was the main idea for calculating heating 
source term. Seta [15] demonstrated that the immersed-
boundary thermal lattice Boltzmann method requires the 
implicit temperature-correction method in order to use the 
source term to  enhance  the accuracy of the temperature 
equation in the lattice Boltzmann scheme.
Recently, a combination of the LBM and smoothed profile 
method (SPM) has been  introduced as an alternative to 
simulate particle suspensions [25]. Nakayama and Yamamoto 
[26] used SPM to simulate particulate flow in their Navier-
Stokes solver. Jafari et al. [25] combined SPM and LBM to 
use the common features of them in order to introduce an 
efficient approach for simulation of particle suspensions.  SPM 
is based on the definition of a  smoothly spreading interface 
layer which is used to represent the particle boundaries such 
that a smoothly varying interface is substituted for  a sharp 
one. The proposed method uses fixed Eulerian grids for the 
host fluid. The curved boundaries are represented by certain 
smooth-body forces in the discretized Boltzmann equation. 
SPM-LBM combination solves a single set of fluid dynamics 
equations for the entire domain, including solid volumes with 
curved boundaries without any internal boundary conditions 
or using interpolation to evaluate the body force at fluid 
nodes. More recently, Hu et al. [27] extended the isothermal 
LBM-SPM to thermal flow to simulate the forced and natural 
convection in complex geometries.
In this paper, we aim to study natural convection in an 
eccentric annulus with constant wall temperature. It should 
be indicated that the fluid flow and heat transfer phenomena 
in irregular domain occur frequently in many engineering 
applications. The boundary treatment for complex boundaries 
is an important issue in computational fluid dynamics. 
Compared with the conventional body-fitted, unstructured 
grid methods and the immersed boundary method (IBM), 
SPM is a very high efficient method. In the present study, 
the thermal Smoothed Profile-Lattice Boltzmann Method, 
SP-TLBM is used to investigate the natural convection in an 
annulus. Based on literature reviews, no work has focused 
on investigating the influences of the physical parameters, 
geometry parameters on flow and heat transfer characteristics 
in an eccentric cylindrical annulus for different horizontal, 
vertical and diagonal positions of the inner cylinder.

2- Governing Equations
LBM is a computational procedure based on the solution of 

Boltzmann equation, from which, macroscopic properties 
such as density and velocity are obtained. It is a mesoscopic 
approach with the capability of considering multi-phase 
situation; but with the assumption of constant temperature. 
In problems containing heat transfer, there is a temperature 
variation which is required to be treated separately to satisfy 
conservation of energy. The method used for the case of heat 
transfer is called Thermal LBM, TLBM. A detailed discussion 
about LBM and TLBM is presented in the following sections.

2- 1- Lattice Boltzmann method
LBM is a numerical procedure to solve Boltzmann equation. 
As the main concept in LBM, density distribution function, 
f(x,v,t) is obtained from a discretized form of Boltzmann 
equation which can be expressed as follows:
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Here fi(x,t) and fi
eq(x,t) are density and equilibrium distribution 

functions, respectively in ei direction at the position x and time 
t, δt is time step and τf is the relaxation time of momentum 
equation. Fi represents external forces such as fluid-solid 
interaction force and buoyancy force. Based on D2Q9 model 
for 2-D lattice Boltzmann method, the discrete velocities 
ei are defined as: e0=(0,0); ei=(±1,0)c and ei=(0,±1)c for                                                                                                                
i=1-4 and ei=(±1,±1)c for i=5-8. Equilibrium distribution 
function, fi

eq, is given in the following  equations:
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It should be mentioned that c is the streaming speed which is 
equal to δx ⁄δt where δx is the lattice spacing and δt is the time 
step and c=√3cs where cs the lattice sound speed. wi  is the 
weighting coefficient  expressed as:
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τf is given as 3υ+0.5  where υ is the kinematic viscosity.
As mentioned before, Fl represents all external forces. In 
LBM, it is expressed as:
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Where FE stands for any external force except fluid-
solid interaction force and FH is the force arises due to the 
hydrodynamic interactions between fluid and solid regions. 
The macroscopic properties of fluid mass density and fluid 

→

→

→

→

→
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velocity can be computed as
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2- 2- Thermal Lattice Boltzmann method
Heat transfer in the fluid flow is governed by energy 
conservation equation. A temperature distribution function is 
defined in LBM for which a similar equation can be expressed 
as:
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Here gi(x,t) and gi
eq are temperature and energy equilibrium 

distribution functions, respectively. Gi is the heat source or 
sink term and τg is the relaxation time for the thermal field 
which is defined by τg=3α+0.5 where α  is the thermal 
diffusivity. 
The equilibrium distribution function for temperature field 
can be defined as:
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Gi can be expressed as
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Where Q is the heat source/sink which is located in solid 
regions. Eventually, the temperature can be computed using 
the following equation:
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2- 3- Smoothed profile method
Smoothed Profile Method, SPM, is a method of implementing 
fluid-solid interaction force in any flow geometry containing 
solid boundaries such as particulate flows. Using SPM, no-
slip boundary condition is satisfied while the correct fluid-
solid interaction force is recovered. It is based on replacing 
sharp fluid-solid interface with a function (φ) which is 
changed continuously through the finite thickness (ε) as 
depicted in Figure 1. While this function can be written in 
different forms, the following equation is used in the present 
computations [25- 27]:
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As observed from the above relation, this is a function which 
varies from 0 to 1 with 1 that corresponds to solid particle 
region and 0 corresponds to the fluid region. If there is more 
than one particle, a function is defined for each particle, 
resulting in a density field expressed as:
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Where n is the number of solid particles.

Considering that φi=0 and φi=1 represent fluid and solid 
regions respectively, a velocity field can be defined for the 
whole computational domain as:
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In the above equation, uf (x,t) and up(x,t) are the velocities  
in fluid and particle (solid) regions, respectively. A two-steps 
procedure is used to implement fluid-solid interaction force 
and obtain  subsequent velocity. It consists of (a) neglecting 
the fluid-solid interaction force and obtaining an intermediate 
velocity field, u’, as:
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and (b) obtaining fluid-solid interaction force from the rate 
of momentum exchange, using intermediate velocity for fluid 
as:
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Fig. 1. Fluid-solid interface function
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Here up(x,t) is the particle velocity. Now the velocity field of 
the whole domain is obtained as:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( )( )

( ) ( ) ( )
( )

( ) ( )( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )( )

8

1

8

0

, 1 , ,

1, , , ,
2

, ,
, , ,

,
, ,

2 ,

, 1 , , , ,

, ,

, ,
, ,

,

f p

i i E
i

p
H

H

f p

i
i

p

u x t u x t u x t

x t u x t e f x t F x t t

u x t u x t
F x t x t x t

t

F x t t
u x t u x t

x t

T x t x t T x t x t T x t

T x t g x t

T x t T x t
Q x t x t

t

T x

ϕ ϕ

ρ δ

ϕ ρ
δ

δ
ρ

ϕ ϕ

ϕ
δ

=

=

= − +

= +

−
=

= +

= − +

=

−
=

′

′

′

′

′

∑

∑

 

  

 





( ) ( ) ( )

( )

( ) ( ) ( ) ( )( )

8

0

1, ,
2

, , , ,

i
i

i

h c

E ref

t g x t Q x t t

R hNu
k

TL d
nNu

T T d

F x t x t g x t T x t T

δ

ρ β

=

= +

=

∂
∫ Γ
∂= −

− ∫ Γ

= −

∑

 

(15)

SPM is used in TLBM in a similar manner as for LBM. Here 
a temperature field is defined for the whole computational 
domain as:
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Where, indices f and p show fluid and particle (solid) regions, 
respectively. Similar to SPM for the velocity field, an 
intermediate temperature field and the heat source/sink term 
is defined by
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Consequently, the corrected temperature field is given by
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From the above equations, velocity and temperature 
distribution are obtained at any time step, starting from 
known initial values. However, an engineering parameter of 
interest is the rate of heat transfer which can be obtained if 
the Nusselt number is determined which is discussed in the 
next section.

2- 4- Averaged nusselt number
Nusselt number is defined based on convection heat transfer 
coefficient (h) , the thermal conductivity of the fluid (k) and 
a length scale which is selected as inner cylinder diameter as:
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With the above definition, Nusselt number is a local parameter 
as convection heat transfer coefficient depends on the specific 
location on the solid surface. Average Nusselt number (Nu) 
over the surface Γ is defined as:
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2- 5- Natural convection simulation
In natural convection, fluid flow occurs due to the temperature 
gradient which, in turn, creates a density variation and 
consequently results in a buoyancy force to appear. Using 

Boussinesq approximation, this force, which is considered as 
an external force, FE is written as:
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where g is acceleration due to gravity, ρ is the density, Tref is 
the reference temperature (cold wall or ambient temperature, 
usually set to 0 in the non-dimensional scale), T is the local 
temperature and β is the thermal expansion coefficient. It must 
be mentioned that the basis of Boussiness approximation is 
that there are flows in which the temperature varies little, and 
therefore the density varies little, yet in which the buoyancy 
drives the motion.

2- 6- Numerical algorithm
The solution procedure of SP-TLBM is performed as follows:
1. Compute the equilibrium distribution functions 

corresponding to the initial values using Eq. (2), and Eq. 
(7). Give the initial distribution functions as f=feq and 
g=geq.

2. Compute the density field, velocity field and temperature 
field using Eq. (4), Eq. (13) and Eq. (17), respectively. 

3. Compute the force term and heat source using Eq. (14) 
and Eq. (18). 

4. Correct the velocity field using Eq. (15). 
5. Correct the temperature field using Eq. (19). 
6. Compute the discrete force and heat source terms using 

Eq. (3) and Eq. (8). 
7. Compute the density and temperature distribution 

functions in the entire computational domain using Eq. 
(1) and Eq. (6) and return to step 2.

3- Results
The geometry considered in the present study is an annular 
region between the two cylinders. For the case of two 
concentric cylinders, this geometry is a standard one which 
has been studied by many authors. This section consists of a 
validation part, including computations for an annulus region 
between the two concentric cylinders followed by the results 
obtained for the case of eccentric cylinders. 
Fig. 2 shows the flow geometry of a region between the two 
cylinders which are not concentric. Here two cylinders with 
radii of Ri and Ro are considered in which the inner cylinder 
has an eccentricity equal to ‘E’. The inner cylinder and outer 
cylinder surface temperature are kept at Th and Tc respectively 
where Th=1 and Tc=0. The range of Rayleigh number 
(Ra=gβ(Th-Tc)L

3/ϑα), eccentricity (e=E/(Ri-Ro)) and radial 
ratio (Ro/Ri) are 103–105, -0.75 ≤ e ≤ 0.75, and 2 ≤ Ro/Ri ≤ 3.2, 
respectively. The Prandtl number (Pr=ϑ/α) of the base fluid is 
kept constant at 0.716 corresponding to the air. In an annulus, 
the flow can be considered steady and laminar for Rayleigh 
numbers less than 106 [28]. The solution is converged when 
the maximum absolute error between the new and old values 
of the velocity field and the temperature field are less than 
10-8.
The computational grid is shown in Fig. 3, the schematic of 
the local computational grid is illustrated in Fig. 3, as well. 
As mentioned before the SPM defines a spatial indicator 
field which varies from 1 in the solid region to 0 in fluid 
region smoothly and this approach does not need to consider 
Lagrangian points on the solid boundary.
As a first simulation, annular region between the two 

→

__

→

→
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concentric cylinders with Ro/Ri = 2.6 at Ra = 104 is studied to 
investigate the effect of the number of grid points on Nusselt 
number. For the grid independence, three different grids were 
used: 200×200, 300×300, and 400×400. The check of the 
grid independence based on the results of the mean Nusselt 
number Nu versus the Rayleigh number Ra for the three sizes 
of the grids is presented in Fig. 4. It is seen that there is no 
discrepancy between the results obtained from these three 
sizes of the grids; the solution being independent of the grids. 
Therefore, the grid size 300×300 is selected for the present 
computations.
To validate the present computational framework, the average 
Nusselt number is computed for the two concentric cylinders 
and compared with experimental and numerical results 
existing in the literature, cf. Table 1. Based on data presented 
in this table, a good correspondence is observed between 
present computations and those of Kuhen and Goldestien 
[2] and Shahraki [6]. Comparison of isotherms between the 
present study and experimental data obtained by Kuehn and 
Goldestin is presented in Fig. 5 for validation.
Fig. 6 shows a radial temperature distribution at four different 
angles for annulus regions of two concentric cylinders. 
Comparison with experimental data of Kuehn and Goldestin 
shows a good correspondence between present computational 

results and experimental data. Please note that the angle θ is 
zero in a vertically upward direction and increases clockwise.

Fig. 2. The geometry of eccentric annulus

Fig. 3. Schematic of the local computational grid

Fig. 4. Nuavg for different grids (Pr=0.716 , ε=0, Ro/Ri =2.6, 
Ra=104)

Kuehn and Goldstein (1976) , Experimental isotherms

Present study , Numerical isotherms
Fig. 5. Comparison of isotherms between the present study and 

experimental data
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Table 2 shows the effect of various eccentricities on the 
average Nusselt number for Ra=105, radius ratio equal to 2.6 
and Pr=0.716. It is observed that as eccentricity increases, the 
average Nusselt number decreases as a result of a reduction in 
convection portion in heat transfer against conduction. This 
behavior is not valid for e=0.8 due to the ascending of pure 
conduction effect in comparison with descending of natural 
convection influence. In other words, in this case, the plume 
region does not have enough space to grow, increase pure 
conduction, and overcome the effect of decreasing natural 
convection.

The influence of horizontal movement of the inner cylinder 
is presented in Figures 7 and 8. Figures 7 and 8 show the 

inner cylinder movement to the right and left, respectively. 
As shown, the behavior of streamlines and isotherms is 
thoroughly symmetrical regardless of the inner cylinder 
movement to the right or left direction. Therefore, the equal 
horizontal movement of the inner cylinder to the right and left 
direction does not influence the streamlines and isotherms 
patterns. However, for small horizontal eccentricities, two 
vortices can be identified on the two sides of the inner 
cylinder. As eccentricity increases, one of the vortices 
shrinks and the other expands. The vortices formation 
region represents the increase in convection portion versus 
conduction. Furthermore; by raising distance from the center, 
conduction quota against convection increases.  
Figures 9 and 10 represent streamlines and isotherms 
for vertical displacement. As illustrated, streamlines and 
isotherms move toward the top of the inner cylinder to reach 
the outer cylinder. The fluid flow in the larger annulus space 
is faster. Consequently, convection is more dominant  in this 
location. As the distance between inner and outer cylinder 
reduces, fluid velocity in this region declines. Therefore, 
vortices move slower in this zone and convection becomes 
less important than conduction. It can be shown that isotherms 
below the inner cylinder become horizontal. Instead, as 
eccentricity in downward direction (negative) increases, 
convection role in annulus space becomes evident. Moreover, 
high-temperature gradient is observed for all states.
Figures 11 and 12 represent streamlines and isotherms for 
diagonal inner cylinder motion. It can be concluded that 
they have the same behavior like the previous case (vertical 
displacement). The only difference is that the streamlines and 
isotherms are not symmetric.
The variation of average Nussselt number with eccentricity 
can be seen in Figure  13. For all cases, it can be observed 
that eccentricity variation affects average Nusselt number. 
There is a symmetrical behavior for horizontal movement. 
For eccentricity equal to -0.75, the highest Nusselt number 
is gained. This shows in this situation, convection is 
dominated in the larger part of the annulus. Also, for vertical 
and diagonal displacements, when the inner cylinder moves 
upward, the gap between the inner and the outer cylinders 
becomes narrow and as a result of this, convection becomes 
weak and Nusselt number decreases to a minimum. As  can 
be seen from the figure, the inner cylinder position can affect 
the  plume region and also the density of isotherms near the 
cylinders and as a result of it, the average Nussselt number 
varies for different positions. When the eccentricity gets 
a negative value, the space for growing the plume region 
increases and consequently the average Nussselt number is 
higher in this case.
The effect of the radial ratio (Ro/Ri) on the isotherms is 
illustrated in Figure 14 when Ra=104, e=-0.5 (vertical 
direction). It is observed that when the parameter Ro/Ri 
decreases the intensity of the temperature, variation near the 
cylinders increases and then enhances the thermal flux near 
the inner cylinder.
Figure 15 shows the average Nusselt number for different 
values of Radios ratio when Ra=104. As  can be observed 
in Figure 15 for all of the radius ratios, the average Nusselt 
number is reduced by increasing eccentricity. This trend 
shows that the convection of the fluid inside the enclosure 
arises more easily in the case of negative eccentricities than 
when e is positive. It is in agreement with the results presented 

Rayleigh 
number

Present 
study

Experimental 
[K-G]

Numerical 
[Sh]

1.31×103 1.1881 1.14 1.1386
9.50×103 2.0537 2.01 1.9901
6.19×104 3.3056 3.32 3.3092
1.02×105 3.7285 3.66 3.6475
K-G: Kuehn and Goldestin (experimental data 1976),

Sh: Shahraki (numerical results 2002)

Table 1. Average Nusselt number for concentric cylinders 
(Pr=0.716 , Ro/Ri =2.6)

Fig. 6. Comparison of the temperature profiles at different 
angles (Pr=0.716, Ro/Ri =2.6 , Ra=5×104)

Lines for the present study and symbols for experimental data

e Present study Experimental 
[K-G]

-0.8 4.1182 3.9504
-0.623 3.9011 3.7824

0 3.7096 3.6475
0.625 3.0665 3.1123
0.8 3.2141 3.2248

Table 2. Average Nusselt number for eccentric cylinders 
(Pr=0.716 , Ro/Ri =2.6 , Ra=105)
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in Figure 13, which confirm that the mean Nusselt number Nu 
for the case of negative eccentricities is greater than for the 
cases positive eccentricities. As can be seen from Figure 15, 
in the case of horizontal eccentricity, the variation of average 
Nusselt number is less sensitive to eccentricity when radius 

ratio is higher. The reason for this phenomenon is that for the 
lower radius ratio the region for natural convection is almost 
the same for all eccentricities.

e=-0.75

e=-0.5

Streamline patterns Isotherm patterns
e=-0.25

Fig. 7. Streamlines and Isotherms for horizontal eccentricity Ra=104, Pr=0.71 (negative ε)

e=0.25
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e=0.5

Streamline patterns Isotherm patterns
e=0.75

Fig. 8. Streamlines and Isotherms for horizontal eccentricity Ra=104, Pr=0.71 (positive ε)

e=-0.75

e=-0.5
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Streamline patterns Isotherm patterns
e=-0.25

Fig. 9. Streamlines and Isotherms for vertical eccentricity Ra=104, Pr=0.71 (negative ε)

e=0.25

e=0.5

Streamline patterns Isotherm patterns
e=0.75

Fig. 10. Streamlines and Isotherms for vertical eccentricity Ra=104, Pr=0.71 (positive ε)
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e=-0.75

e=-0.5

Streamline patterns Isotherm patterns
e=-0.25

Fig. 11. Streamlines and Isotherms for diagonal eccentricity Ra=104, Pr=0.71 (negative ε)

e=0.25
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Figure 16 presents the influence of Rayleigh number on 
isotherms when Ro /Ri=2.6, e=0.5 (in a diagonal direction). 
It can be observed when the Ra increases, the temperature 
gradients at the surfaces of the cylinders increase and as a 
consequence, the mean Nusselt number also increases. Also, 
it is observable that by increasing the Rayleigh number, 
the fluid movement occurs simply. Also when the Rayleigh 
number increases from 103 to 105, the larger plume appears on 
the inner cylinder. It is clear from Figure 17 that the average 
Nusselt number increases for higher Rayleigh numbers. It 
can be concluded that this phenomenon is independent of the 
direction of eccentricity. As the Rayleigh number increases, 
the main plumes of the isotherms ascends towards the outer 
cylinder, thermal boundary layer thickness decreases and 
it causes the Nusselt number to increase. As it is expected, 
there is a direct relation between Nu and Ra. As well as Ra 

e=0.5

Streamline patterns Isotherm patterns
e=0.75

Fig. 10. Streamlines and Isotherms for diagonal eccentricity Ra=104, Pr=0.71 (positive ε)

Fig. 13. Average Nusselt number versus eccentricity

Fig. 14. Isotherms for different radial ratios (Ra=104, e=-0.5)

Ro /Ri= 3.2 Ro /Ri= 2.6 Ro /Ri= 2
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4- Conclusions
In the present study, SP-TLBM is employed as a forceful 
technique to simulate natural convection in an eccentric 
annulus. As all the calculations in SP-TLBM are conducted on 
Eulerian fluid nodes, this method is much simpler in contrast 
with the methods which use Lagrangian points on the surface 
of the curved boundary. The effects of Rayleigh number 
Ra, eccentricity e and radial ratio on streamlines, isotherms 
and Nusselt number are considered in this study. The inner 
cylinder position can change the structure of the flow and 
temperature fields. It is found that for equal absolute values 
of eccentricities in horizontal movement, the same behavior 
was observed for streamlines and isotherms in the annulus. 
The variation of Nusselt number versus eccentricity is almost 
identical for vertical and diagonal movement of the inner 
cylinder. In both cases, when the inner cylinder is located at 
the lowest level, the maximum Nusselt number is gained due 
to the existence of a powerful circulation in the annulus and 
the simplification of the fluid movement in space of the top 
of the inner cylinder. It is also found that eccentricity and 
radial ratio have  a significant effect on the average Nusselt 

increases also Nu increases. This is due to the fact that an 
increase in Ra causes the increase in the buoyancy forces.

(a)

(b)

(c)
Fig. 15. The average Nusselt number for different values of 

Radios ratio when Ra=104.
(a, b and c are corresponding to vertical, horizontal and 

diagonal eccentricities, respectively)

Fig. 16. Isotherms for different Rayleigh numbers  (Ro /Ri=2.6 , e= 0.5)

Ra=103 Ra=104 Ra=105
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[5] G. Guj, F. Stella, Natural convection in horizontal 
eccentric annuli: numerical study, Numerical Heat 
Transfer, Part A: Applications, 27(1) (1995) 89-105.

[6] F. Shahraki, Modeling of buoyancy-driven flow and heat 
transfer for air in a horizontal annulus: effects of vertical 
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Numerical Heat Transfer: Part A: Applications, 42(6) 
(2002) 603-621.
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2001.

[8] Z. Guo, C. Shu, Lattice Boltzmann method and its 
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for the lattice Boltzmann method in incompressible limit, 
Journal of Computational Physics, 146(1) (1998) 282-
300.

[11] X. Shan, Simulation of Rayleigh-Bénard convection 
using a lattice Boltzmann method, Physical Review E, 
55(3) (1997) 2780.
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of natural convection heat transfer in an enclosure at 
different Rayleigh number using lattice Boltzmann 
method, Computers & Fluids, 124 (2016) 30-38.
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natural convection in a concentric annulus between a 
square outer cylinder and a circular inner cylinder using 
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number, especially for the higher Ra number. For the higher 
Ra numbers the buoyancy forces and the intensity of the 
plume increase and as a result of this,  the Nusselt number 
also becomes higher.
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