Document Type : Research Article
Authors
1 Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
2 Department of Mechanical and Aeronautical Engineering, Clarkson University, New York, USA
3 Biofuel Engine Research, Queensland University of Technology, Brisbane, Australia
4 School of Aerospace, Mechanical and Manufacturing, Engineering, RMIT University, Melbourne, Australia
Abstract
Highlights
[1] C. Marchioli, A. Giusti, M.V. Salvetti, A. Soldati, Direct Numerical Simulation of Particle Wall Transfer and Deposition in Upward Turbulent Pipe Flow, International journal of Multiphase flow, 29(6) (2003) 1017-1038.
[2] L. Tian, G. Ahmadi, Particle Deposition in Turbulent Duct Flows - Comparisons of Different Model Predictions, Journal of Aerosol Science, 38(4) (2007) 377-397.
[3] J. Tu, K. Inthavong, G. Ahmadi, Computational Fluid and Particle Dynamics in the Human Respiratory System, Springer Netherlands, 2012.
[4] V. Golkarfard, P. Talebizadeh, Numerical Comparison of Airborne Particles Deposition and Dispersion in Radiator and Floor Heating Systems, Advanced Powder Technology, 25(1) (2014) 389-397.
[5] D.B. Ingham, Diffusion of aerosols from a stream flowing through a cylindrical tube, Journal of Aerosol Science, 6(2) (1975) 125-132.
[6] B.S. Cohen, B. Asgharian, Deposition of Ultrafine Particles in the Upper Airways: An Empirical Analysis, Journal of Aerosol Science, 21(6) (1990) 789-797.
[7] J.W. Thomas, Assessment of airborne radioactivity, in, Int. Atomic Energy Agency,Vienna, 1967, pp. 701-712.
[8] D.B. Ingham, Simultaneous diffusion and sedimentation of aerosol particles in rectangular tubes, Journal of Aerosol Science, 7(5) (1976) 373-380.
[9] D.B. Ingham, Diffusion of aerosols in the entrance region of a smooth cylindrical pipe, Journal of Aerosol Science, 22(3) (1991) 253-257.
[10] H.C. Yeh, G.M. Schum, Models of human lung airways and their application to inhaled particle deposition, Bull Math Biol, 42 (1980) 461-480.
[11] A. Li, G. Ahmadi, Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow, Aerosol Science Technology, 16 (1992) 209-226.
[12] A. Li, G. Ahmadi, Computer simulation of deposition of aerosols in a turbulent channel flow with rough wall, Aerosol Science Technology, 18 (1993) 11-24.
[13] H. Ounis, G. Ahmadi, J.B. McLaughlin, Brownian particles deposition in a directly simulated turbulent channel flow, Physics of Fluids A, 5 (1993) 1427-1432.
[14] P. Zamankhan, G. Ahmadi, Z. Wang, P.K. Hopke, Y.- S. Cheng, W.C. Su, D. Leonard, Airflow and Deposition of Nano-Particles in a Human Nasal Cavity, Aerosol Science and Technology, 40(6) (2006) 463-476.
[15] K. Inthavong, K. Zhang, J. Tu, Modeling Submicron and Micron Particle Deposition in a Human Nasal Cavity, in: Seventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 2009.
[16] P.W. Longest, S. Vinchurkar, Effects of Mesh Style and Grid Convergence on Particle Deposition in Bifurcating Airway Models with Comparisons to Experimental Data, Medical Engineering & Physics, 29(3) (2007) 350-366.
[17] F. Krause, A. Wenk, C. Lacor, W.G. Kreyling, W. Möller, S. Verbanck, Numerical and experimental study on the deposition of nanoparticles in an extrathoracic oral airway model, Journal of Aerosol Science, 57 (2013) 131-143.
[18] H. Shi, C. Kleinstreuer, Z. Zhang, C.S. Kim, Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions, Physics of Fluids, 16(7) (2004) 2199-2213.
[19] Z. Yin, Z. Dai, Investigating the Nanoparticles Penetration Efficiency through Horizontal Tubes Using an Experimental Approach, Advances in Mathematical Physics, (2015).
[20] A. Guha, Transport and Deposition of Particles in Turbulent and Laminar Flow, Annual Review of Fluid Mechanics, 40(1) (2008) 311-341.
[21] Z. Zhang, C. Kleinstreuer, C. Kim, Airflow and Nanoparticle Deposition in a 16-Generation Tracheobronchial Airway Model, Ann Biomed Eng, 36(12) (2008) 2095-2110.
[22] Q. Ge, K. Inthavong, J. Tu, Local Deposition Fractions of Ultrafine Particles in a Human Nasal-Sinus Cavity CFD Model, Inhalation Toxicology, 24(8) (2012) 492- 505.
[23] M. Abarham, P. Zamankhan, J.W. Hoard, D. Styles, C.S. Sluder, J.M. Storey, M.J. Lance, D. Assanis, CFD analysis of particle transport in axi-symmetric tube flows under the influence of thermophoretic force, International Journal of Heat and Mass Transfer, 61 (2013) 94-105.
[24] J.-Z. Lin, Z.-Q. Yin, P.-F. Lin, M.-Z. Yu, X.-K. Ku, Distribution and penetration efficiency of nanoparticles between 8–550nm in pipe bends under laminar and turbulent flow conditions, International Journal of Heat and Mass Transfer, 85 (2015) 61-70.
[25] Y. Shang, J. Dong, K. Inthavong, J. Tu, Comparative numerical modeling of inhaled micron-sized particle deposition in human and rat nasal cavities, Inhalation Toxicology, (2015) 1-12.
[26] M. Yousefi, K. Inthavong, J. Tu, Microparticle Transport and Deposition in the Human Oral Airway: Toward the Smart Spacer, Aerosol Science and Technology, 49(11) (2015) 1109-1120.
[27] W.C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, Wiley, 2012.
[28] K. Inthavong, K. Zhang, J. Tu, Numerical Modelling of Nanoparticle Deposition in the Nasal Cavity and the Tracheobronchial Airway, Computer Methods in Biomechanics and Biomedical Engineering, 14(7) (2011) 633-643.
[29] [29] P.W. Longest, J. Xi, Computational Investigation of Particle Inertia Effects on Submicron Aerosol Deposition in the Respiratory Tract, Journal of Aerosol Science, 38(1) (2007) 111-130.
[30] P.G. Gormley, M. Kennedy, Diffusion from a Stream Flowing through a Cylindrical Tube, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 52 (1948) 163-169.
[31] P. Talebizadeh, H. Rahimzadeh, G. Ahmadi, R. Brown, K. Inthavong, 2016. “Time history of diesel particle deposition in cylindrical dielectric barrier discharge reactors”. Journal of Nanoparticle Research, 18:378.
Keywords