[1] K.E. Whitener Jr, P.E. Sheehan, Graphene synthesis, Diamond and related materials, 46 (2014) 25-34.
[2] B.K. Choi, J. Kim, Z. Luo, J. Kim, J.H. Kim, T. Hyeon, S. Mehraeen, S. Park, J. Park, Shape transformation mechanism of gold nanoplates, ACS nano, 17(3) (2023) 2007-2018.
[3] J. Chen, S. Li, Y. Chen, J. Yang, J. Dong, X. Lu, l-cysteine-terminated triangular silver nanoplates/MXene nanosheets are used as electrochemical biosensors for efficiently detecting 5-hydroxytryptamine, Analytical Chemistry, 93(49) (2021) 16655-16663.
[4] Y. Zhao, M. Zhao, X. Ding, Z. Liu, H. Tian, H. Shen, X. Zu, S. Li, L. Qiao, One-step colloid fabrication of nickel phosphides nanoplate/nickel foam hybrid electrode for high-performance asymmetric supercapacitors, Chemical Engineering Journal, 373 (2019) 1132-1143.
[5] R. Ding, S. Chen, J. Lv, W. Zhang, X.-d. Zhao, J. Liu, X. Wang, T.-j. Gui, B.-j. Li, Y.-z. Tang, Study on graphene modified organic anti-corrosion coatings: A comprehensive review, Journal of Alloys and Compounds, 806 (2019) 611-635.
[6] W. Chen, S. Luo, M. Sun, X. Wu, Y. Zhou, Y. Liao, M. Tang, X. Fan, B. Huang, Z. Quan, High‐entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis, Advanced Materials, 34(43) (2022) 2206276.
[7] H. Hu, H. Li, Y. Lei, J. Liu, X. Liu, R. Wang, J. Peng, X. Wang, Mg-doped LiMn0. 8Fe0. 2PO4/C nano-plate as a high-performance cathode material for lithium-ion batteries, Journal of Energy Storage, 73 (2023) 109006.
[8] M. Guerroudj, A. Drai, A.A. Daikh, M.S.A. Houari, B. Aour, M.A. Eltaher, M.-O. Belarbi, Size-dependent free vibration analysis of multidirectional functionally graded nanobeams via a nonlocal strain gradient theory, Journal of Engineering Mathematics, 146 (2024) 20.
[9] I. Jafarsadeghi-Pournaki, G. Rezazadeh, R. Shabani, Nonlinear instability modeling of a nonlocal strain gradient functionally graded capacitive nanobridge in thermal environment, International Journal of Applied Mechanics, 10 (2018) 1850083.
[10] Z. Rahimi, G. Rezazadeh, W. Sumelka, A nonlocal fractional stress–strain gradient theory, International Journal of Mechanics and Materials in Design, 16 (2020) 265–278.
[11] B. Mawphlang, P. Patra, Study of the large bending behavior of CNTs using LDTM and nonlocal elasticity theory, International Journal of Non-Linear Mechanics, 166 (2024) 104828.
[12] S. Valilou, G. Rezazadeh, R. Shabani, M. Fathalilou, Bifurcation analysis of a capacitive microresonator considering nonlocal elasticity theory, International Journal of Nonlinear Sciences and Numerical Simulation, 15 (2014) 241–249.
[13] G. Rezazadeh, M. Sheikhlou, R. Shabani, Analysis of bias DC voltage effect on thermoelastic damping ratio in short nanobeam resonators based on nonlocal elasticity theory and dual-phase-lagging heat conduction model, Meccanica, 50 (2015) 2963–2976.
[14] M. Al-Furjan, M. Xu, A. Farrokhian, G.S. Jafari, X. Shen, R. Kolahchi, On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories, Waves in Random and Complex Media, 35(1) (2025) 1147-1171.
[15] S. Dastjerdi, F. Naeijian, B. Akgöz, Ö. Civalek, On the mechanical analysis of microcrystalline cellulose sheets, International Journal of Engineering Science, 166 (2021) 103500.
[16] Ş.D. Akbaş, S. Dastjerdi, B. Akgöz, et al., Dynamic analysis of functionally graded porous microbeams under moving load, Transport in Porous Media, 142 (2022) 209–227.
[17] M. Davoodi Yekta, A. Rahi, Design of two layer clamped-clamped microsensor based on classical and non-classical theories, AUT Journal of Mechanical Engineering, 9(1) (2025) 19-32.
[18] A.C. Eringen, Microcontinuum field theories: I. Foundations and solids, Springer Science & Business Media, 2012.
[19] J. Peddieson, G.R. Buchanan, R.P. McNitt, Application of nonlocal continuum models to nanotechnology, International journal of engineering science, 41(3-5) (2003) 305-312.
[20] K. Kiani, H. Pakdaman, Bilaterally nonlocal dynamics of layer-by-layer assembly of double-walled carbon nanotubes accounting for intertube rigorous van der Waals forces, European Journal of Mechanics-A/Solids, 80 (2020) 103876.
[21] K. Kiani, H. Pakdaman, Nonlocal vibrations and potential instability of monolayers from double-walled carbon nanotubes subjected to temperature gradients, International Journal of Mechanical Sciences, 144 (2018) 576-599.
[22] H. Azimloo, G. Rezazadeh, R. Shabani, Bifurcation analysis of an electrostatically actuated nanobeam based on nonlocal theory considering centrifugal forces, International Journal of Nonlinear Sciences and Numerical Simulation, 21 (2020) 303–318.
[23] D.M. Tien, D.V. Thom, P.V. Minh, N.C. Tho, T.N. Doan, D.N. Mai, The application of the nonlocal theory and various shear strain theories for bending and free vibration analysis of organic nanoplates, Mechanics Based Design of Structures and Machines, 52(1) (2024) 588-610.
[24] K. Kiani, H. Pakdaman, Three-dimensional vibrations and instabilities of electron-transporting multi-layered graphene sheets via nonlocal-continuum-based models, Applied Mathematical Modelling, 145 (2025) 116103.
[25] Ö. Civalek, B. Uzun, M.Ö. Yayli, Torsional and longitudinal vibration analysis of a porous nanorod with arbitrary boundaries, Physica B: Condensed Matter, 633 (2022) 413761.
[26] H. Pakdaman, M. Roshan, S. Soltani, Vibrational analysis of two crossed graphene nanoribbons via nonlocal differential/integral models, Acta Mechanica, 235(2) (2024) 797-818.
[27] F. Khosravi, S.A. Hosseini, B.A. Hamidi, On torsional vibrations of triangular nanowire, Thin-Walled Structures, 148 (2020) 106591.
[28] S. Foroutan, A. Haghshenas, M. Hashemian, S.A. Eftekhari, D. Toghraie, Spatial buckling analysis of current-carrying nanowires in the presence of a longitudinal magnetic field accounting for both surface and nonlocal effects, Physica E: Low-dimensional Systems and Nanostructures, 97 (2018) 191-205.
[29] P. Lu, P. Zhang, H. Lee, C. Wang, J. Reddy, Non-local elastic plate theories, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2088) (2007) 3225-3240.
[30] J. Phadikar, S. Pradhan, Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates, Computational materials science, 49(3) (2010) 492-499.
[31] Q.H. Pham, V.K. Tran, T.T. Tran, V.C. Nguyen, A.M. Zenkour, Nonlocal higher-order finite element modeling for vibration analysis of viscoelastic orthotropic nanoplates resting on variable viscoelastic foundation, Composite Structures, 318 (2023) 117067.
[32] R.A. Arpanahi, B. Mohammadi, M.T. Ahmadian, S.H. Hashemi, Study on the buckling behavior of nonlocal nanoplate submerged in viscous moving fluid, International Journal of Dynamics and Control, 11(6) (2023) 2820-2830.
[33] F. Ebrahimi, N. Shafiei, M. Kazemi, S.M. Mousavi Abdollahi, Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method, Mechanics of Advanced Materials and Structures, 24(15) (2017) 1257-1273.
[34] S. Dastjerdi, B. Akgöz, New static and dynamic analyses of macro and nano FGM plates using exact three-dimensional elasticity in thermal environment, Composite Structures, 192 (2018) 626-641.
[35] S. Chakraverty, L. Behera, Free vibration of rectangular nanoplates using Rayleigh–Ritz method, Physica E: Low-dimensional Systems and Nanostructures, 56 (2014) 357-363.
[36] H. Analooei, M. Azhari, A. Heidarpour, Elastic buckling and vibration analyses of orthotropic nanoplates using nonlocal continuum mechanics and spline finite strip method, Applied Mathematical Modelling, 37(10-11) (2013) 6703-6717.
[37] H. Tanzadeh, H. Amoushahi, Buckling analysis of orthotropic nanoplates based on nonlocal strain gradient theory using the higher-order finite strip method (H-FSM), European Journal of Mechanics-A/Solids, 95 (2022) 104622.
[38] S.S. Ma’en, W.G. Al-Kouz, Vibration analysis of non-uniform orthotropic Kirchhoff plates resting on elastic foundation based on nonlocal elasticity theory, International Journal of Mechanical Sciences, 114 (2016) 1-11.
[39] Y. Zhang, L. Zhang, K. Liew, J. Yu, Buckling analysis of graphene sheets embedded in an elastic medium based on the kp-Ritz method and non-local elasticity theory, Engineering Analysis with Boundary Elements, 70 (2016) 31-39.
[40] Ö. Civalek, B. Akgöz, Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix, Computational Materials Science, 77 (2013) 295-303.
[41] S.H. Hashemi, H. Mehrabani, A. Ahmadi-Savadkoohi, Forced vibration of nanoplate on viscoelastic substrate with consideration of structural damping: An analytical solution, Composite Structures, 133 (2015) 8-15.
[42] S. Pradhan, J. Phadikar, Nonlocal elasticity theory for vibration of nanoplates, Journal of Sound and Vibration, 325(1-2) (2009) 206-223.
[43] M. Panyatong, B. Chinnaboon, S. Chucheepsakul, Free vibration analysis of FG nanoplates embedded in elastic medium based on second-order shear deformation plate theory and nonlocal elasticity, Composite Structures, 153 (2016) 428-441.
[44] R. Aghababaei, J. Reddy, Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates, Journal of Sound and Vibration, 326(1-2) (2009) 277-289.
[45] M. Ilkhani, A. Bahrami, S. Hosseini-Hashemi, Free vibrations of thin rectangular nano-plates using wave propagation approach, Applied Mathematical Modelling, 40(2) (2016) 1287-1299.
[46] D. Rong, J. Fan, C. Lim, X. Xu, Z. Zhou, A new analytical approach for free vibration, buckling and forced vibration of rectangular nanoplates based on nonlocal elasticity theory, International Journal of Structural Stability and Dynamics, 18(04) (2018) 1850055.
[47] S. Hosseini-Hashemi, M. Zare, R. Nazemnezhad, An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity, Composite Structures, 100 (2013) 290-299.
[48] S. Hosseini-Hashemi, M. Kermajani, R. Nazemnezhad, An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory, European Journal of Mechanics-A/Solids, 51 (2015) 29-43.
[49] X. Zheng, M. Huang, D. An, C. Zhou, R. Li, New analytic bending, buckling, and free vibration solutions of rectangular nanoplates by the symplectic superposition method, Scientific Reports, 11(1) (2021) 2939.
[50] Z. Wang, Y. Xing, Q. Sun, Y. Yang, Highly accurate closed-form solutions for free vibration and eigenbuckling of rectangular nanoplates, Composite Structures, 210 (2019) 822-830.
[51] Z. Qin, S. Zhao, X. Pang, B. Safaei, F. Chu, A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions, International Journal of Mechanical Sciences, 170 (2020) 105341.
[52] G. Jin, X. Ma, S. Shi, T. Ye, Z. Liu, A modified Fourier series solution for vibration analysis of truncated conical shells with general boundary conditions, Applied Acoustics, 85 (2014) 82-96.
[53] D. Zhou, Y. Cheung, F. Au, S. Lo, Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method, International Journal of Solids and Structures, 39(26) (2002) 6339-6353.
[54] H. Lin, D. Cao, A unified Gram-Schmidt-Ritz formulation for vibration and active flutter control analysis of honeycomb sandwich plate with general elastic support, Journal of Vibroengineering, 20(5) (2018) 1982-2000.
[55] Z. Qin, F. Chu, J. Zu, Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study, International Journal of Mechanical Sciences, 133 (2017) 91-99.
[56] S. Zhao, X. Zhang, S. Zhang, B. Safaei, Z. Qin, F. Chu, A unified modeling approach for rotating flexible shaft-disk systems with general boundary and coupling conditions, International Journal of Mechanical Sciences, 218 (2022) 107073.
[57] B. Qin, R. Zhong, Q. Wu, T. Wang, Q. Wang, A unified formulation for free vibration of laminated plate through Jacobi-Ritz method, Thin-Walled Structures, 144 (2019) 106354.
[58] X. Song, G. Jin, T. Ye, S. Zhong, A formulation for turbulent-flow-induced vibration of elastic plates with general boundary conditions, International Journal of Mechanical Sciences, 205 (2021) 106602.
[59] G. Li, Y. Xing, Z. Wang, Closed-form solutions for free vibration of rectangular nonlocal Mindlin plates with arbitrary homogeneous boundary conditions, Composites Part C: Open Access, 6 (2021) 100193.
[60] C. Li, S.K. Lai, X. Yang, On the nano-structural dependence of nonlocal dynamics and its relationship to the upper limit of nonlocal scale parameter, Applied Mathematical Modelling, 69 (2019) 127-141.
[61] C.L. Dym, I.H. Shames, Solid mechanics, Springer, 1973.
[62] Y. Song, K. Xue, Q. Li, A solution method for free vibration of intact and cracked polygonal thin plates using the Ritz method and Jacobi polynomials, Journal of Sound and Vibration, 519 (2022) 116578.
[63] R.B. Bhat, Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method, Journal of sound and vibration, 102(4) (1985) 493-499.
[64] Y. Liang, Q. Han, Prediction of the nonlocal scaling parameter for graphene sheet, European Journal of Mechanics-A/Solids, 45 (2014) 153-160.
[65] S. Sahmani, A. M. Fattahi, Calibration of developed nonlocal anisotropic shear deformable plate model for uniaxial instability of 3D metallic carbon nanosheets using MD simulations, Computer Methods in Applied Mechanics and Engineering, 322 (2017) 187-207.
[66] M. Shariati, S. S. M. N. Souq, B. Azizi, Surface- and nonlocality-dependent vibrational behavior of graphene using atomistic-modal analysis, International Journal of Mechanical Sciences, 228 (2022) 107471.
[67] S. H. Madani, M. H. Sabour, M. Fadaee, Molecular dynamics simulation of vibrational behavior of annular graphene sheet: Identification of nonlocal parameter, Journal of Molecular Graphics and Modelling, 79 (2018) 264-272.