[1] D. Soleymanzadeh, H. Ghafarirad, M. Zareinejad, Sensorless adaptive sliding mode position control for piezoelectric actuators with charge leakage, Journal of Intelligent Material Systems and Structures, 31(1) (2020) 40-52.
[2] T.K. Das, B. Shirinzadeh, M. Ghafarian, A. Al-Jodah, Design, analysis, and experimental investigation of a single-stage and low parasitic motion piezoelectric actuated microgripper, Smart Materials and Structures, 29(4) (2020) 045028.
[3] W.L. Zhu, Z. Zhu, S. To, Q. Liu, B.F. Ju, X. Zhou, Redundantly piezo-actuated XYθz compliant mechanism for nano-positioning featuring simple kinematics, bi-directional motion and enlarged workspace, Smart Materials and Structures, 25(12) (2016) 125002.
[4] R. Hosseini, M. Hamedi, H. Golparvar, O. Zargar, Analytical and experimental investigation into increasing operating bandwidth of piezoelectric energy harvesters, AUT Journal of Mechanical Engineering, 3(1) (2019) 113-122.
[5] K. Mauser, M. Sjarov, A. Nowak, L.F. Campanile, A. Hasse, Design and control of actively prestressed compliant mechanisms for variable stiffness actuators, Journal of Intelligent Material Systems and Structures, 33(19) (2022) 2422-2439.
[6] V. Paniselvam, N.Y. Jin Tan, S.K. Anantharajan, A Review on the Design and Application of Compliant Mechanism-Based Fast-Tool Servos for Ultraprecision Machining, Machines, 11(4) (2023) 450.
[7] L. Zhao, X. Yu, P. Li, Y. Qiao, High-precision compliant mechanism for lens XY micro-adjustment, Review of Scientific Instruments, 91(3) (2020) 035004
[8] M. Ling, J. Cao, Z. Jiang, J. Lin, A semi-analytical modeling method for the static and dynamic analysis of complex compliant mechanism, Precision Engineering, 52 (2018) 64-72.
[9] N. Xu, M. Dai, X. Zhou, Analysis and design of symmetric notch flexure hinges, Advances in Mechanical Engineering, 9(11) (2017) 1687814017734513.
[10] L.G. Salmon, D.B. Gunyan, J.M. Derderian, P.G. Opdahl, L.L. Howell, Use of the Pseudo-Rigid Body Model to Simplify the Description of Complliant Micro-Mechanisms, in, Transducer Research Foundation Inc. (TRF), 2021, pp. 136-139.
[11] B. Hargrove, A. Nastevska, M. Frecker, J. Jovanova, Pseudo rigid body model for a nonlinear folding compliant mechanism, Mechanism and Machine Theory, 176 (2022) 105017.
[12] Y.Q. Yu, L.L. Howell, C. Lusk, Y. Yue, M.G. He, Dynamic modeling of compliant mechanisms based on the pseudo-rigid-body model, Journal of Mechanical Design, Transactions of the ASME, 127(4) (2005) 760-765.
[13] N. Lobontiu, J.S.N. Paine, E. Garcia, M. Goldfarb, Design of symmetric conic-section flexure hinges based on closed-form compliance equations, Mechanism and machine theory, 37(5) (2002) 477-498.
[14] J.W. Ryu, D.-G. Gweon, K.S. Moon, Optimal design of a flexure hinge based XYφ wafer stage, Precision engineering, 21(1) (1997) 18-28.
[15] H.-Y. Kim, D.-H. Ahn, D.-G. Gweon, Development of a novel 3-degrees of freedom flexure based positioning system, Rev Sci Instrum, 83(5) (2012) 055114.
[16] M. Ling, X. He, M. Wu, L. Cao, Dynamic Design of a Novel High-Speed Piezoelectric Flow Control Valve Based on Compliant Mechanism, IEEE/ASME Transactions on Mechatronics, 27(6) (2022) 4942-4950.
[17] M. Ling, L. Yuan, Z. Luo, T. Huang, X. Zhang, Enhancing Dynamic Bandwidth of Amplified Piezoelectric Actuators by a Hybrid Lever and Bridge-Type Compliant Mechanism, Actuators, 11(5) (2022).
[18] M. Ling, C. Zhang, L. Chen, Optimized design of a compact multi-stage displacement amplification mechanism with enhanced efficiency, Precision Engineering, 77 (2022) 77-89.
[19] M. Ling, X. Zhang, J. Cao, Extended Dynamic Stiffness Model for Analyzing Flexure- Hinge Mechanisms With Lumped Compliance, Journal of Mechanical Design, Transactions of the ASME, 144(1) (2022) 013304.
[20] I.D. Mayergoyz, Mathematical models of hysteresis and their applications, Academic press, 2003.
[21] D. Hughes, J.T. Wen, Preisach modeling of piezoceramic and shape memory alloy hysteresis, Smart materials and structures, 6(3) (1997) 287.
[22] M.A. Krasnosel'skii, A.V. Pokrovskii, Systems with hysteresis, Springer Science & Business Media, 2012.
[23] J. Gan, X. Zhang, H. Wu, A generalized Prandtl-Ishlinskii model for characterizing the rate-independent and rate-dependent hysteresis of piezoelectric actuators, Review of Scientific Instruments, 87(3) (2016) 035002.
[24] A. Visintin, Differential models of hysteresis, Springer Science & Business Media, 2013.
[25] C.-M. Chen, Y.-C. Hsu, R.-F. Fung, System identification of a Scott–Russell amplifying mechanism with offset driven by a piezoelectric actuator, Applied Mathematical Modelling, 36(6) (2012) 2788-2802.
[26] S. Bashash, N. Jalili, Robust multiple frequency trajectory tracking control of piezoelectrically driven micro/nanopositioning systems, IEEE Transactions on Control Systems Technology, 15(5) (2007) 867-878.
[27] M. Ling, L.L. Howell, J. Cao, Z. Jiang, A pseudo-static model for dynamic analysis on frequency domain of distributed compliant mechanisms, Journal of Mechanisms and Robotics, 10(5) (2018) 051011.
[28] M. Ling, X. Zhang, Coupled dynamic modeling of piezo-actuated compliant mechanisms subjected to external loads, Mechanism and Machine Theory, 160 (2021) 104283.
[29] H. Ghafarirad, S.M. Rezaei, A. Abdullah, M. Zareinejad, M. Saadat, Observer-based sliding mode control with adaptive perturbation estimation for micropositioning actuators, Precision Engineering, 35(2) (2011) 271-281.