[1] T.ZM. Bawm, A.R.Md. Harunur Rashid, M. Hasanuzzaman, Effects of Doping/Co-Doping on Li2FeSiO4 Cathode Material for Lithium-Ion Batteries: A Review, Encyclopedia of Materials: Electronics, 3 (2023) 381-391.
[2] T. Muthu Muniyandi, S. Balamurugan, N. Naresh, I. Prakash, R. Venkatesh, U. Deshpande, N. Satyanarayana, Li2FeSiO4/C aerogel: A promising nanostructured cathode material for lithium-ion battery applications, Journal of Alloys and Compounds, 887 (2021) 161341.
[3] X. Bi, L. Chang. Sh. Luo, Sh. Cao, A. Wei, W. Yang, J. Liu, F. Zhang, The recent progress of Li2FeSiO4 as a poly-anionic cathode material for lithium-ion batteries, Energe Reaserch, 46 (2021) 5373–5398.
[4] F. Zheng, Q. Lin, S. Wu, Z.-z. Zhu, Influence of the Fe-Si-O framework in crystal structure on the phase stability and electrochemical performance of Li2FeSiO4 cathode, Solid State Ionics, 356 (2020) 115436.
[5] H. Kageyama, Y. Hashimoto, Y. Oaki, H. Imai, Six-armed twin crystals composed of lithium iron silicate nanoplates and their electrochemical properties, CrystEngComm, 17(44) (2015) 8486-8491.
[6] A. Nytén, A. Abouimrane, M. Armand, T. Gustafsson, J.O. Thomas, Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material, Electrochemistry communications, 7(2) (2005) 156-160.
[7] X.B. Longjiao Chang, Shaohua Luo, Wei Yang, Anlu Wei, n Yang, Jianan Liu, Insight into the high-efficiency separation of Si element from low-grade laterite nickel ore and the preparation of Li2FeSiO4/C cathode materials for lithium-ion batteries, Journal of Alloys and Compounds, 937(168357) (2023).
[8] H.C. Yutian Yang, Rihuang Nie, Cheng Li, Shuangwu Xu, Mengcheng Zhou, Xinyu Zhang, Hongming Zhou, Using the synergistic effect of co-doping to engineer magnesium and chlorine co-doping to improve the electrochemical performance of Li2FeSiO4/C cathodes, Journal of Alloys and Compounds, 935(167958) (2023).
[9] S. Chakrabarti, A.K. Thakur, K. Biswas, Effect of Ti modification on Structural, Electronic and Electrochemical properties of Li 2 FeSiO 4 —A DFT study using FPLAPW approach, Electrochimica Acta, 236 (2017) 288-296.
[10] H. Li, Y. Li, X. Cheng, C. Gong, Hollow Hemispherical Lithium Iron Silicate Synthesized by an Ascorbic Acid-Assisted Hydrothermal Method as a Cathode Material for Li Ion Batteries, Materials (Basel), 15(10) (2022).
[11] S. Yi, J. Moon, M. Cho, K. Cho, Ab-initio design of novel cathode material LiFeP1-SiO4 for rechargeable Li-ion batteries, Electrochimica Acta, 313 (2019) 70-78.
[12] Y.L. Xiaoying Luo, Xuan Cheng, Mechanistic study in sulfur-carbon co-modification on Li2FeSiO4 for lithium-ion batteries, Ceramics International, 49 (2023) 27277–27287.
[13] H. Qiu, D. Jin, C. Wang, G. Chen, L. Wang, H. Yue, D. Zhang, Design of Li2FeSiO4 cathode material for enhanced lithium-ion storage performance, Chemical Engineering Journal, 379 (2020) 122329.
[14] K. Pushnitsa, P. Novikov, A. Popovich, Q. Wang, Synthesis of Li2FeSiO4/C composite cathode material for Li-ion batteries and influence of dispersion effect on electrochemical characteristics, Materials Today: Proceedings, 30 (2020) 773-777.
[15] P. Vajeeston, Ionic conductivity enhancement by particle size reduction in Li2FeSiO4, Materials Letters, 218 (2018) 313-316.
[16] B. Shen, J. Zeng, N. Fu, X. Wang, Zh. Yong, High reversible capacity silicon anode by segregated graphene-carbon nanotube networks for lithium ion half/full batteries, Energy Storage, 55 (2022) 105767.
[17] T. Liu, Y. Liu, Y. Yu, Y. Ren, C. Sun, Y. Liu, J. Xu, C. Liu, Z. Yang, W. Lu, P. Ferreira, Z. Chao, J. Xie, Approaching theoretical specific capacity of iron-rich lithium iron silicate using graphene-incorporation and fluorine-doping, Journal of Materials Chemistry A, 10(8) (2022) 4006-4014.
[18] W. Zhang, W. Shao, B. Zhao, K. Dai, Review—Research Progress of Li2FeSiO4 Cathode Materials for Lithium-Ion Batteries, Journal of The Electrochemical Society, 169(7) (2022) 070526.
[19] J. Yang, X. Kang, D. He, A. Zheng, M. Pan, S. Mu, Graphene activated 3D-hierarchical flower-like Li2FeSiO4 for high-performance lithium-ion batteries, Journal of Materials Chemistry A, 3(32) (2015) 16567-16573.
[20] J. Yang, L. Hu, J. Zheng, D. He, L. Tian, Sh. Mu, F. Pan, Li2FeSiO4 nanorods bonded with graphene for high-performance batteries, Materials Chemistry A, 3 (2015) 9601–9608.
[21] L.L. Zhang, S. Duan, X.L. Yang, G. Peng, G. Liang, Y.H. Huang, Y. Jiang, S.B. Ni, M. Li, Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium-ion batteries, ACS Appl Mater Interfaces, 5(23) (2013) 12304-12309.
[22] Y. Shang, H. Xu, M. Li, G. Zhang, Preparation of N-Doped Graphene by Hydrothermal Method and Interpretation of N-Doped Mechanism, Nano, 12(02) (2017) 1750018.
[23] X. Wang, C. Qing, Q. Zhang, W. Fan, X. Huang, B. Yang, J. Cui, Facile synthesis and enhanced electrochemical performance of Li2FeSiO4/C/reduced graphene oxide nanocomposites, Electrochimica Acta, 134 (2014) 371-376.
[24] Z. Liu, Q. Wang, B. Zhang, T. Wu, Y. Li, Efficient Removal of Bisphenol A Using Nitrogen-Doped Graphene-Like Plates from Green Petroleum Coke, Molecules, 25(15) (2020) 3543.
[25] D.R.A.B. Alyaa. K. Mageed, A. Salmiaton, Shamsul Izhar, Musab Abdul Razak, H.M.Yusoff, F.M. Yasin, Suryani Kamarudin, Preparation and Characterization of Nitrogen Doped Reduced Graphene Oxide Sheet, nternational Journal of Applied Chemistry, 12 (2016) 104-108.
[26] H. Aghajani, A.T. Tabrizi, R. Ghorbani, S. Behrangi, M. Stupavska, N. Abdian, Evaluation of electrochemical hydrogen storage capability of three-dimensional nano-structured nitrogen-doped graphene, Journal of Alloys and Compounds, 906 (2022) 164284.
[27] X.D. H. Gao, Q. Wu, Z. Gao, Sh. Lou, Y. Zhao, Improved capacity and cycling stability of Li2FeSiO4 nanocrystalline induced by nitrogen-doped carbon coating, Solid State Electrochemistry, 25 (2021) 1679–1689.
[28] H. Gao, Q. Wu, M. Guo, S. Yang, Y. Zhao, Y.-U. Kwon, Rationally fabricating nitrogen-doped carbon coated nanocrystalline Li2FeSiO4@N-C with excellent Li-ion battery performances, Electrochimica Acta, 318 (2019) 720-729.
[29] Z. Dong Peng, Y. Bing Cao, G. Rong Hu, K. Du, X. Guang Gao, Z. Wei Xiao, Microwave synthesis of Li2FeSiO4 cathode materials for lithium-ion batteries, Chinese Chemical Letters, 20(8) (2009) 1000-1004.
[30] M. Rahsepar, F. Foroughi, H. Kim, A new enzyme-free biosensor based on nitrogen-doped graphene with high sensing performance for electrochemical detection of glucose at biological pH value, Sensors and Actuators B: Chemical, 282 (2019) 322-330.
[31] Y. Zeng, H.-C. Chiu, M. Rasool, N. Brodusch, R. Gauvin, D.-T. Jiang, D.H. Ryan, K. Zaghib, G.P. Demopoulos, Hydrothermal crystallization of Pmn21 Li2FeSiO4 hollow mesocrystals for Li-ion cathode application, Chemical Engineering Journal, 359 (2019) 1592-1602.
[32] X. Lu, H.-C. Chiu, Z. Arthur, J. Zhou, J. Wang, N. Chen, D.-T. Jiang, K. Zaghib, G.P. Demopoulos, Li-ion storage dynamics in metastable nanostructured Li2FeSiO4 cathode: Antisite-induced phase transition and lattice oxygen participation, Journal of Power Sources, 329 (2016) 355-363.
[33] T. Masese, C. Tassel, Y. Orikasa, Y. Koyama, H. Arai, N. Hayashi, J. Kim, T. Mori, K. Yamamoto, Y. Kobayashi, H. Kageyama, Z. Ogumi, Y. Uchimoto, Crystal Structural Changes and Charge Compensation Mechanism during Two Lithium Extraction/Insertion between Li2FeSiO4 and FeSiO4, The Journal of Physical Chemistry C, 119(19) (2015) 10206-10211.
[34] S. Emami, H. Aghajani, A.T. Tabrizi, Sustainable Oxygen-Free Copper Powder Production Method from Wastes, Journal of Sustainable Metallurgy, 9(4) (2023) 1803-1809.
[35] H. Qiu, H. Yue, T. Zhang, Y. Ju, Y. Zhang, Z. Guo, C. Wang, G. Chen, Y. Wei, D. Zhang, Enhanced Electrochemical Performance of Li 2 FeSiO 4 /C Positive Electrodes for Lithium-Ion Batteries via Yttrium Doping, Electrochimica Acta, 188 (2016) 636-644.
[36] R. Tan, J. Yang, J. Zheng, K. Wang, L. Lin, S. Ji, J. Liu, F. Pan, Fast rechargeable all-solid-state lithium ion batteries with high capacity based on nano-sized Li2FeSiO4 cathode by tuning temperature, Nano Energy, 16 (2015) 112-121.
[37] L. Liu, P. Wang, J. Li, G. Shi, L. Ma, J. Zhao, H. An, Hydrothermal preparation and intrinsic transport properties of nanoscale Li2FeSiO4, Solid State Ionics, 320 (2018) 353-359.
[38] P. Sivaraj, B. Nalini, K.P. Abhilash, D. Lakshmi, P. Christopher Selvin, P. Balraju, Study on the influences of calcination temperature on structure and its electrochemical performance of Li2FeSiO4/C nano cathode for Lithium Ion Batteries, Journal of Alloys and Compounds, 740 (2018) 1116-1124.
[39] J. Yang, J. Zheng, X. Kang, G. Teng, L. Hu, R. Tan, K. Wang, X. Song, M. Xu, S. Mu, F. Pan, Tuning structural stability and lithium-storage properties by d -orbital hybridization substitution in full tetrahedron Li 2 FeSiO 4 nanocrystal, Nano Energy, 20 (2016) 117-125.
[40] L.-L. Zhang, H.-B. Sun, X.-L. Yang, Y.-W. Wen, Y.-H. Huang, M. Li, G. Peng, H.-C. Tao, S.-B. Ni, G. Liang, Study on electrochemical performance and mechanism of V-doped Li2FeSiO4 cathode material for Li-ion batteries, Electrochimica Acta, 152 (2015) 496-504.
[41] Y. Zeng, H.-C. Chiu, B. Ouyang, K. Zaghib, G.P. Demopoulos, Defect Engineering of Iron-Rich Orthosilicate Cathode Materials with Enhanced Lithium-Ion Intercalation Capacity and Kinetics, ACS Applied Energy Materials, 3(1) (2019) 675-686.
[42] L. Li, E. Han, M. Jiao, Y. Zhang, X. Yang, W. Yuan, The effect of Ag or Zn composite on the electrochemical performance of Li2FeSiO4 cathode materials, Ionics, 26(6) (2020) 2727-2736.