[1] G. Murali, P. Vali, J. Jaya, A.K. Bewoor, R. Kumra, Experimental studies on solar reusable can air heating system integrated with latent heat storage, Journal of Thermal Analysis and Calorimetry, 149 (2024) 8865-8872.
[2] Y. Huo, X. Pang, Z. Rao, Heat transfer enhancement in thermal energy storage using phase change material by optimal arrangement, International Journal of Thermal Science, 161 (2021) 106736.
[3] P. Shahamat, Z. Mehrdoost, Numerical investigation of performance enhancement in a PCM-based thermal energy storage system using stair-shaped fins and nanoparticles, Applied Thermal Engineering, 257 (2024) 124433.
[4] F.L. Rashid, A.K. Hussein, M.A. Al-Obaidi, B.M. Alshammari, B. Ali, R. Hajlaoui, M.M. Boudabous, L. Kolsi, A review of radient heating and cooling systems incorporating phase change materials, Journal of Thermal Analysis and Calorimetry, 149 (2024) 7891-7917.
[5] G. Tang, Y. Lu, S. Shi, F. Wu, L. Tong, S. Zhu, S. Zhang, Z. Wang, X. Guo, Research on the effect and mechanism of composite phase change materials inhibiting low-temperature oxidation of coal, Journal of Thermal Analysis and Calorimetry, 149 (2024) 7635-7649.
[6] Z.A. Qureshi, H.M. Ali, S. Khushnood, Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review, International Journal of Heat and Mass Transfer, 127 (2018) 838-56.
[7] K.A.R. Ismail, C.L.F. Alves, M.S. Modesto, Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder, Applied Thermal Engineering, 21 (2001) 53-77.
[8] Y. Pahamli, M.J. Hosseini, A.A. Ranjbar, R. Bahrampoury, Effect of nanoparticle dispersion and inclination angle on melting of PCM in a shell and tube heat exchanger, Journal of the Taiwan Institute of Chemical Engineers, 81 (2017) 316-334.
[9] M. Sheikholeslami, Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM, Journal of the Taiwan Institute of Chemical Engineers, 86 (2018) 25-41.
[10] M. Abdolahimoghadam, M. Rahimi, A numerical evaluation of a latent heat thermal energy storage system in the presence of various types of nanoparticles, Applied Thermal Engineering, 230 (2023) 20854.
[11] Y. Hu, D. Jasim, A. Alizadeh, A. Rahmani, A.S. Al-Shati, M. Zarringhalam, M. Shamsborhan, N. Nasajpour-Esfahani, Simulation of heat transfer in a nanoparticle enhanced phase change material to design battery thermal management systems: A lattice Boltzmann method study, Journal of the Taiwan Institute of Chemical Engineers, 152 (2023) 105137.
[12] Z. Wang, H. Zhang, B. Dou, G. Zhang, W. Wu, X. Zhou, Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials, Applied Thermal Engineering, 201 (2022) 117778.
[13] B. Wang, J. Xue, Z. Du, J. Yu, L. Lu, T. Xiao, X. Yang, Numerical optimization design of heat storage tank with metal foam for enhancing phase transition, Journal of the Taiwan Institute of Chemical Engineers, 148 (2023) 104466.
[14] R. Hu, X. Huang, X. Gao, L. Lu, X. Yang, B. Sunden, Design and assessment on a bottom-cut shape for latent heat storage tank filled with metal foam, International Journal of Thermal Sciences, 197 (2024) 108575.
[15] M. Sheikholeslami, S. Lohrasbi, D. Domairry Ganji, Response surface method optimization of innovative fin structure for expediting discharge process in latent heat thermal energy storage system containing nano-enhanced phase change material, Journal of the Taiwan Institute of Chemical Engineers, 67 (2016) 115-125.
[16] R. Hamid, Z. Mehrdoost, Thermal performance enhancement of multiple tubes latent heat thermal energy storage system using sinusoidal wavy fins and tubes geometry modification, Applied Thermal Engineering, 245 (2024) 122750.
[17] Y. Shen, A.R. Mazhar, P. Zhang, S. Liu, Structure optimization of tree-shaped fins for improving the thermodynamic performance in latent heat storage, International Journal of Thermal Sciences, 184 (2023) 108003.
[18] Z. Zhang, Z. Zhu, Thermodynamic performance improvement of the horizontal shell-and-tube latent heat thermal storage unit by splitter plates and upper-and-lower cascade PCM, Journal of Energy Storage, 83 (2024) 110802.
[19] S. Nekoonam, R. Roshandel, Modeling and optimization of a multiple (cascading) phase change material solar storage system, Thermal Science and Engineering Progress, 23 (2021) 100873.
[20] Z. Liu, Z. Liu, J. Guo, F. Wang, X. Yang, J. Yan, Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery, Applied Energy, 321 (2022) 119300.
[21] A. Sciacovelli, F. Gagliardi, V. Verda, Maximization of performance of a PCM latent heat storage system with innovative fins, Applied Energy, 137 (2015) 707-715.
[22] M. Sheikholeslami, S. Lohrasebi, D.D. Ganji, Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method, Applied Thermal Engineering, 107 (2016) 154-166.
[23] K.A. Aly, A.R. El-Lathy, M.A. Fouad, Enhancement of solidification rate of latent heat thermal energy storage using corrugated fins, Journal of Energy Storage, 24 (2019) 100785.
[24] S. Zhang, L. Pu, L. Xu, R. Liu, Y. Li, Melting performance analysis of phase change materials in different finned thermal energy storage, Applied Thermal Engineering, 176 (2020) 115425.
[25] Y. Huang, X. Liu, Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins, Renewable Energy, 2174 (2021) 199-217.
[26] S. Yao, X. Huang, Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy storage system, Energy, 227 (2021) 120527.
[27] X. Huang, S. Yao, Solidification performance of new trapezoidal longitudinal fins in latent heat thermal energy storage, Case Studies in Thermal Engineering, 26 (2021) 101110.
[28] J.R. Patel, M.K. Rathod, M. Sherement, Heat transfer augmentation of triplex type latent heat thermal energy storage using combined eccentricity and longitudinal fin, Journal of Energy Storage, 50 (2022) 104167.
[29] Z. Zheng, X. Cai, C. Yang, Y. Xu, Improving the solidification performance of a latent heat thermal energy storage unit using arrow-shaped fins obtained by an innovative fast optimization algorithm, Renewable Energy, 195 (2022) 566-577.
[30] L. Lijun, N. Yaqian, L. Xiaoqing, L. Xiaoyan, Numerical simulation of the improvement of latent heat storage unit performance in solidification process by eccentric fractal finned tube, Journal of Energy Storage, 57 (2023) 106044.
[31] J. Zhang, Z. Cao, S. Huang, X. Huang, Y. Han, C. Wen, J. Honoré Walther, Y. Yang, Solidification performance improvement of phase change materials for latent heat thermal energy storage using novel branch-structured fins and nanoparticles, Applied Energy, 342 (2023) 121158.
[32] F. Ma, T. Zhu, Y. Zhang, X. Lu, W. Zhang, F. Ma, A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes, Energies, 16 (2023) 545.
[33] Y. Amini, M.H. Abbasirad, Melting performance enhancement of a latent thermal energy storage device using innovative arc fins and nanoparticles, Journal of Brazilian Society of Mechanical Sciences and Engineering, 45 (2023) 298.
[34] C. Li, Q. Li, R. Ge, Assessment on the melting performance of a phase change material based shell and tube thermal energy storage device containing leaf-shaped longitudinal fins, Journal of Energy Storage, 60 (2023) 106574.
[35] A. Tavakoli, M. Farzaneh-Gord, A. Ebrahimi-Moghadam, Using internal sinusoidal fins and phase change material for performance enhancement of thermal energy storage systems: Heat transfer and entropy generation analysis, Renewable Energy, 205 (2023) 222-237.
[36] S. Baghaei Oskouei, O. Bayer, Experimental and numerical investigation of melting and solidification enhancement using Fibonacci-inspired fins in a latent thermal energy storage unit, International Journal of Heat and Mass Transfer, 210 (2023) 124180.
[37] Z.J. Zheng, H. Yin, C. He, Y. Wei, M. Cui, Y. Xu, Parameter optimization of unevenly spiderweb-shaped fin for enhanced solidification performance of shell and tube latent-heat thermal energy storage units, Journal of Energy Storage, 30 (2023) 108495.
[38] M. Boujelbene, H.I. Mohammed, H.S. Sultan, M. Eisapour, Z. Chen, J.M. Mahdi, A. Cairns, P. Talebizadehsardari, A comparative study of twisted and straight fins in enhancing the melting and solidifying rates of PCM in horizontal double-tube heat exchangers, International Communications in Heat and Mass Transfer, 151 (2024) 107224.
[39] H. Li, C. Hu, D. Tang, Z. Rao, Improving heat storage performance of shell-and-tube unit by using structural-optimized spiral fins, Journal of Energy Storage, 79 (2024) 110212.
[40] M. Sheikholeslami, A. Nematpour Keshteli, A. Shafee, Melting and solidification within an energy storage unit with triangular fin and CuO nanoparticles, Journal of Energy Storage, 32 (2020) 101716.
[41] V.R. Voller, C. Prakash, A fixed grid numerical modeling methodology for convection diffusion mushy region phase change problems, International Journal of Heat and Mass Transfer, 30 (1978) 1709-1719.
[42] ANSYS Academic Research, "ANSYS fluent theory guide," 2019.
[43] A.D. Brent, V.R. Voller, K.J. Reid Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal, Numerical Heat Transfer, 13 (1988) 297-318.
[44] F.L. Tan, S.F. Hosseinzadeh, J.M. Khodadadi, L. Fan, Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule, International Journal of Heat and Mass Transfer, 52 (2009) 3464-3472.
[45] A.A. Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, A.T. Mohammad, Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins, Energy and Buildings, 68 (2014) 33-41.