Solidification enhancement of phase change material in a triplex tube latent heat energy storage unit using longitudinal-parabolic fins

Document Type : Research Article

Authors

Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

Abstract

This paper numerically investigates the solidification performance improvement of phase change material in a triplex tube latent heat thermal energy storage unit by introducing an innovative longitudinal-parabolic fin. A numerical model based on the enthalpy-porosity approach is employed to simulate the discharging process. Simulation results reveal that the longitudinal-parabolic fins outperform the conventional straight fins in effectually increasing the phase change performance of the latent heat thermal energy storage unit. The complete discharging time of the triplex tube latent heat thermal energy storage unit with the proposed fin was reduced by up to 38.5% compared to that of the unit with straight fins. The study also investigates the influence of geometric parameters of the designed fin to achieve superior phase change material discharging efficiency. Effects of radial pitch and angular pitch of the longitudinal-parabolic fins on energy discharge time are studied by examining various cases under the constant total fins volume. Results infer that the radial pitch of parabolic fins has a moderate impact on solidification time improvement, while the angular pitch has a remarkable impact on reducing energy discharging time. Decreasing the angular pitch from 120° to 60° reduces the solidification time by 52.3%. The maximum of saving discharge time for the most efficient fin design is 61.8% in comparison with straight fins.                 

Keywords

Main Subjects


[1] G. Murali, P. Vali, J. Jaya, A.K. Bewoor, R. Kumra, Experimental studies on solar reusable can air heating system integrated with latent heat storage, Journal of Thermal Analysis and Calorimetry, 149 (2024) 8865-8872. 
[2] Y. Huo, X. Pang, Z. Rao, Heat transfer enhancement in thermal energy storage using phase change material by optimal arrangement, International Journal of Thermal Science, 161 (2021) 106736.
[3] P. Shahamat, Z. Mehrdoost, Numerical investigation of performance enhancement in a PCM-based thermal energy storage system using stair-shaped fins and nanoparticles, Applied Thermal Engineering, 257 (2024) 124433.
[4] F.L. Rashid, A.K. Hussein, M.A. Al-Obaidi, B.M. Alshammari, B. Ali, R. Hajlaoui, M.M. Boudabous, L. Kolsi, A review of radient heating and cooling systems incorporating phase change materials, Journal of Thermal Analysis and Calorimetry, 149 (2024) 7891-7917.
[5] G. Tang, Y. Lu, S. Shi, F. Wu, L. Tong, S. Zhu, S. Zhang, Z. Wang, X. Guo, Research on the effect and mechanism of composite phase change materials inhibiting low-temperature oxidation of coal, Journal of Thermal Analysis and Calorimetry, 149 (2024) 7635-7649.
[6] Z.A. Qureshi, H.M. Ali, S. Khushnood, Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review, International Journal of Heat and Mass Transfer, 127 (2018) 838-56.
[7] K.A.R. Ismail, C.L.F. Alves, M.S. Modesto, Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder, Applied Thermal Engineering, 21 (2001) 53-77.  
[8] Y. Pahamli, M.J. Hosseini, A.A. Ranjbar, R. Bahrampoury, Effect of nanoparticle dispersion and inclination angle on melting of PCM in a shell and tube heat exchanger, Journal of the Taiwan Institute of Chemical Engineers, 81 (2017) 316-334.
[9] M. Sheikholeslami, Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM, Journal of the Taiwan Institute of Chemical Engineers, 86 (2018) 25-41.
[10] M. Abdolahimoghadam, M. Rahimi, A numerical evaluation of a latent heat thermal energy storage system in the presence of various types of nanoparticles, Applied Thermal Engineering, 230 (2023) 20854.
[11] Y. Hu, D. Jasim, A. Alizadeh, A. Rahmani, A.S. Al-Shati, M. Zarringhalam, M. Shamsborhan, N. Nasajpour-Esfahani, Simulation of heat transfer in a nanoparticle enhanced phase change material to design battery thermal management systems: A lattice Boltzmann method study, Journal of the Taiwan Institute of Chemical Engineers, 152 (2023) 105137.
[12] Z. Wang, H. Zhang, B. Dou, G. Zhang, W. Wu, X. Zhou, Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials, Applied Thermal Engineering, 201 (2022) 117778.
[13] B. Wang, J. Xue, Z. Du, J. Yu, L. Lu, T. Xiao, X. Yang, Numerical optimization design of heat storage tank with metal foam for enhancing phase transition, Journal of the Taiwan Institute of Chemical Engineers, 148 (2023) 104466.
[14] R. Hu, X. Huang, X. Gao, L. Lu, X. Yang, B. Sunden, Design and assessment on a bottom-cut shape for latent heat storage tank filled with metal foam, International Journal of Thermal Sciences, 197 (2024) 108575.   
[15] M. Sheikholeslami, S. Lohrasbi, D. Domairry Ganji, Response surface method optimization of innovative fin structure for expediting discharge process in latent heat thermal energy storage system containing nano-enhanced phase change material, Journal of the Taiwan Institute of Chemical Engineers, 67 (2016) 115-125.
[16] R. Hamid, Z. Mehrdoost, Thermal performance enhancement of multiple tubes latent heat thermal energy storage system using sinusoidal wavy fins and tubes geometry modification, Applied Thermal Engineering, 245 (2024) 122750.
[17] Y. Shen, A.R. Mazhar, P. Zhang, S. Liu, Structure optimization of tree-shaped fins for improving the thermodynamic performance in latent heat storage, International Journal of Thermal Sciences, 184 (2023) 108003.
[18] Z. Zhang, Z. Zhu, Thermodynamic performance improvement of the horizontal shell-and-tube latent heat thermal storage unit by splitter plates and upper-and-lower cascade PCM, Journal of Energy Storage, 83 (2024) 110802.
[19] S. Nekoonam, R. Roshandel, Modeling and optimization of a multiple (cascading) phase change material solar storage system, Thermal Science and Engineering Progress, 23 (2021) 100873.
[20] Z. Liu, Z. Liu, J. Guo, F. Wang, X. Yang, J. Yan, Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery, Applied Energy, 321 (2022) 119300.
[21] A. Sciacovelli, F. Gagliardi, V. Verda, Maximization of performance of a PCM latent heat storage system with innovative fins, Applied Energy, 137 (2015) 707-715.
[22] M. Sheikholeslami, S. Lohrasebi, D.D. Ganji, Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method, Applied Thermal Engineering, 107 (2016) 154-166.
[23] K.A. Aly, A.R. El-Lathy, M.A. Fouad, Enhancement of solidification rate of latent heat thermal energy storage using corrugated fins, Journal of Energy Storage, 24 (2019) 100785.
[24] S. Zhang, L. Pu, L. Xu, R. Liu, Y. Li, Melting performance analysis of phase change materials in different finned thermal energy storage, Applied Thermal Engineering, 176 (2020) 115425.
[25] Y. Huang, X. Liu, Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins, Renewable Energy, 2174 (2021) 199-217. 
[26] S. Yao, X. Huang, Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy storage system, Energy, 227 (2021) 120527.
[27] X. Huang, S. Yao, Solidification performance of new trapezoidal longitudinal fins in latent heat thermal energy storage, Case Studies in Thermal Engineering, 26 (2021) 101110.
[28] J.R. Patel, M.K. Rathod, M. Sherement, Heat transfer augmentation of triplex type latent heat thermal energy storage using combined eccentricity and longitudinal fin, Journal of Energy Storage, 50 (2022) 104167.
[29] Z. Zheng, X. Cai, C. Yang, Y. Xu, Improving the solidification performance of a latent heat thermal energy storage unit using arrow-shaped fins obtained by an innovative fast optimization algorithm, Renewable Energy, 195 (2022) 566-577.
[30] L. Lijun, N. Yaqian, L. Xiaoqing, L. Xiaoyan, Numerical simulation of the improvement of latent heat storage unit performance in solidification process by eccentric fractal finned tube, Journal of Energy Storage, 57 (2023) 106044.
[31] J. Zhang, Z. Cao, S. Huang, X. Huang, Y. Han, C. Wen, J. Honoré Walther, Y. Yang, Solidification performance improvement of phase change materials for latent heat thermal energy storage using novel branch-structured fins and nanoparticles, Applied Energy, 342 (2023) 121158.
[32] F. Ma, T. Zhu, Y. Zhang, X. Lu, W. Zhang, F. Ma, A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes, Energies, 16 (2023) 545.
[33] Y. Amini, M.H. Abbasirad, Melting performance enhancement of a latent thermal energy storage device using innovative arc fins and nanoparticles, Journal of Brazilian Society of Mechanical Sciences and Engineering, 45 (2023) 298.
[34] C. Li, Q. Li, R. Ge, Assessment on the melting performance of a phase change material based shell and tube thermal energy storage device containing leaf-shaped longitudinal fins, Journal of Energy Storage, 60 (2023) 106574.
[35] A. Tavakoli, M. Farzaneh-Gord, A. Ebrahimi-Moghadam, Using internal sinusoidal fins and phase change material for performance enhancement of thermal energy storage systems: Heat transfer and entropy generation analysis, Renewable Energy, 205 (2023) 222-237.
[36] S. Baghaei Oskouei, O. Bayer, Experimental and numerical investigation of melting and solidification enhancement using Fibonacci-inspired fins in a latent thermal energy storage unit, International Journal of Heat and Mass Transfer, 210 (2023) 124180.
[37] Z.J. Zheng, H. Yin, C. He, Y. Wei, M. Cui, Y. Xu, Parameter optimization of unevenly spiderweb-shaped fin for enhanced solidification performance of shell and tube latent-heat thermal energy storage units, Journal of Energy Storage, 30 (2023) 108495.
[38] M. Boujelbene, H.I. Mohammed, H.S. Sultan, M. Eisapour, Z. Chen, J.M. Mahdi, A. Cairns, P. Talebizadehsardari, A comparative study of twisted and straight fins in enhancing the melting and solidifying rates of PCM in horizontal double-tube heat exchangers, International Communications in Heat and Mass Transfer, 151 (2024) 107224.
[39] H. Li, C. Hu, D. Tang, Z. Rao, Improving heat storage performance of shell-and-tube unit by using structural-optimized spiral fins, Journal of Energy Storage, 79 (2024) 110212.
[40] M. Sheikholeslami, A. Nematpour Keshteli, A. Shafee, Melting and solidification within an energy storage unit with triangular fin and CuO nanoparticles, Journal of Energy Storage, 32 (2020) 101716.
[41] V.R. Voller, C. Prakash, A fixed grid numerical modeling methodology for convection diffusion mushy region phase change problems, International Journal of Heat and Mass Transfer, 30 (1978) 1709-1719.
[42] ANSYS Academic Research, "ANSYS fluent theory guide," 2019.
[43] A.D. Brent, V.R. Voller, K.J. Reid Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal, Numerical Heat Transfer, 13 (1988) 297-318.
[44] F.L. Tan, S.F. Hosseinzadeh, J.M. Khodadadi, L. Fan, Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule, International Journal of Heat and Mass Transfer, 52 (2009) 3464-3472.
[45] A.A. Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, A.T. Mohammad, Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins, Energy and Buildings, 68 (2014) 33-41.