[1] M. Baghelani, A. Hosseini-Sianaki, Z. Behzadi, A. Lavasani, Simulation of capacitive pressure sensor based on microelectromechanical systems technology, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232 (2017) 095440621770609.
[2] S. Faroughi, E.F. Rojas, A. Abdelkefi, Y.H. Park, Reduced-order modeling and usefulness of non-uniform beams for flexoelectric energy harvesting applications, Acta Mechanica, 230(7) (2019) 2339-2361.
[3] M. Fan, H. Tzou, Vibration control with the converse flexoelectric effect on the laminated beams, Journal of Intelligent Material Systems and Structures, 30 (2019) 1045389X1984401.
[4] A. Moura, Combined piezoelectric and flexoelectric effects in resonant dynamics of nanocantilevers, Journal of Intelligent Material Systems and Structures, 29 (2018) 1045389X1880344.
[5] D.-P. Zhang, Y. Lei, S. Adhikari, Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory, Acta Mechanica, 229 (2018).
[6] J. Li, H. Huang, T. Morita, Stepping piezoelectric actuators with large working stroke for nano-positioning systems: A review, Sensors and Actuators A: Physical, 292 (2019) 39-51.
[7] S.F. Dehkordi, Y.T. Beni, On the size-dependent electromechanical layered beam-type porous functionally graded flexoelectric energy harvesters, Engineering Analysis with Boundary Elements, 165 (2024) 105801.
[8] P. Joshi, S. Kumar, V. Jain, J. Singh, Distributed MEMS Mass-Sensor Based on Piezoelectric Resonant Micro-Cantilevers, Journal of Microelectromechanical Systems, PP (2019).
[9] E. Habibi, M. Nematollahi, Position and mass identification in nanotube mass sensor using neural networks, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233 (2019) 095440621984107.
[10] K.M. Hansen, T. Thundat, Microcantilever biosensors, Methods (San Diego, Calif.), 37(1) (2005) 57-64.
[11] B. Ilic, H.G. Craighead, S. Krylov, W.Senarante, C. Ober, O.Neuzil, Attogram detection using nanoelectromechanical oscillators, Journal of Applied Physics, 95 (2004).
[12] T. Burg, A. Mirza, N. Milovic, C. Tsau, G. Popescu, J. Foster, S. Manalis, Vacuum-Packaged Suspended Microchannel Resonant Mass Sensor for Biomolecular Detection, Microelectromechanical Systems, Journal of, 15 (2007) 1466-1476.
[13] S. Dohn, R. Sandberg, W. Svendsen, A. Boisen, Enhanced functionality of cantilever based mass sensors using higher modes and functionalized particles, 2005.
[14] A.R. Hadjesfandiari, Size-dependent piezoelectricity, International Journal of Solids and Structures, 50(18) (2013) 2781-2791.
[15] S. Dehkordi, Y. Tadi Beni, Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory, International Journal of Mechanical Sciences, 128 (2017).
[16] R. Maranganti, N.D. Sharma, P. Sharma, Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green's function solutions and embedded inclusions, Physical Review B - PHYS REV B, 74 (2006).
[17] G.-F. Wang, S.-W. Yu, X.-Q. Feng, A piezoelectric constitutive theory with rotation gradient effects, European Journal of Mechanics - A/Solids, 23(3) (2004) 455-466.
[18] A. Hadjesfandiari, G. Dargush, Couple stress theory for solids, International Journal of Solids and Structures - INT J SOLIDS STRUCT, 48 (2011) 2496-2510.
[19] Z. Yan, L. Jiang, Size-dependent bending and vibration behavior of piezoelectric nanobeams due to flexoelectricity, Journal of Physics D: Applied Physics, 46 (2013) 355502.
[20] Y. Tadi Beni, A Nonlinear Electro-Mechanical Analysis of Nanobeams Based on the Size-Dependent Piezoelectricity Theory, Journal of Mechanics, -1 (2016) 1-13.
[21] A. Bouchaala, A. Nayfeh, N. Jaber, M. Younis, Mass and position determination in MEMS mass sensors: A theoretical and an experimental investigation, Journal of Micromechanics and Microengineering, 26 (2016).
[22] M. Shaat, S.A. Mohamed, Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories, International Journal of Mechanical Sciences, 84 (2014) 208-217.
[23] K. Park, L.J. Millet, N. Kim, H. Li, X. Jin, G. Popescu, N.R. Aluru, K.J. Hsia, R. Bashir, Measurement of adherent cell mass and growth, Proceedings of the National Academy of Sciences, 107(48) (2010) 20691-20696.
[24] G. Wu, R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, A. Majumdar, Bioassay of prostate-specific antigen (PSA) using microcantilevers, Nature biotechnology, 19(9) (2001) 856-860.
[25] L.G. Carrascosa, M. Moreno, M. Álvarez, L.M. Lechuga, Nanomechanical biosensors: a new sensing tool, TrAC Trends in Analytical Chemistry, 25(3) (2006) 196-206.
[26] R. Raiteri, M. Grattarola, H.-J. Butt, P. Skládal, Micromechanical cantilever-based biosensors, Sensors and Actuators B: Chemical, 79(2) (2001) 115-126.
[27] W. Lacarbonara, Nonlinear Structural Mechanics Nonlinear Structural Mechanics. Theory, Dynamical Phenomena and Modeling, 2013.
[28] A. Najafi Sohi, P.M. Nieva, Size-dependent effects of surface stress on resonance behavior of microcantilever-based sensors, Sensors, and Actuators A: Physical, 269 (2018) 505-514.
[29] Y. Solyaev, S. Lurie, Pure bending of a piezoelectric layer in second gradient electroelasticity theory, Acta Mechanica, 230 (2019).
[30] H. Vaghefpour, H. Arvin, Nonlinear free vibration analysis of pre-actuated isotropic piezoelectric cantilever Nano-beams, Microsystem Technologies, 25 (2019).
[31] M.I. Younis, A.H. Nayfeh, A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation, Nonlinear Dynamics, 31 (2003) 91-117.
[32] A. Barari, H. Dadashpour Kaliji, M. Ghadimi, D. domiri ganji, Non-Linear Vibration of Euler-Bernoulli Beams, Latin American Journal of Solids and Structures, 8 (2011) 139-148.
[33] Y. Tadi Beni, Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams, Journal of Intelligent Material Systems and Structures, 27 (2016).
[34] H. Arvin, Free vibration analysis of micro rotating beams based on the strain gradient theory using the differential transform method: Timoshenko versus Euler-Bernoulli beam models, European Journal of Mechanics - A/Solids, 65 (2017).