[1] S. Hosseini, M.A. Vaziry-Zanjany, H.R. Ovesy, E. Lekzian, Multi-Objective Multidisciplinary Design Optimization of Regional Truss-Braced Wing Jet Aircraft, in: Aerospace Europe Conference 2023, 2023.
[2] P.-J. Proesmans, R. Vos, Airplane design optimization for minimal global warming impact, Journal of Aircraft, 59(5) (2022) 1363-1381.
[3] S. Karpuk, R. Radespiel, A. Elham, Assessment of future airframe and propulsion technologies on sustainability of next-generation mid-range aircraft, Aerospace, 9(5) (2022) 279.
[4] X. Xin, G. Huang, W. Lu, J. Wang, High bypass ratio turbofan engine with additional tip-driving fan: a design innovation, in: 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015, pp. 4022.
[5] F. Yin, A.G. Rao, A review of gas turbine engine with inter-stage turbine burner, Progress in Aerospace Sciences, 121 (2020) 100695.
[6] V. McDonell, M. Klein, Ground-based gas turbine combustion: metrics, constraints, and system interactions, Gas Turbine Emissions, 38 (2013) 24.
[7] A.J.A. Mom, 1 - Introduction to gas turbines, in: P. Jansohn (Ed.) Modern Gas Turbine Systems, Woodhead Publishing, 2013, pp. 3-20.
[8] T. Nikolaidis, S. Jafari, D. Bosak, P. Pilidis, Exchange rate analysis for ultra high bypass ratio geared turbofan engines, Applied Sciences, 10(21) (2020) 7945.
[9] A. Magrini, D. Buosi, E. Benini, Analysis of installation aerodynamics and comparison of optimised configuration of an ultra-high bypass ratio turbofan nacelle, Aerospace Science and Technology, 128 (2022) 107756.
[10] A. Magrini, E. Benini, H.-D. Yao, J. Postma, C. Sheaf, A review of installation effects of ultra-high bypass ratio engines, Progress in Aerospace Sciences, 119 (2020) 100680.
[11] H.K. Kayadelen, Y. Ust, V. Bashan, Thermodynamic performance analysis of state of the art gas turbine cycles with inter-stage turbine reheat and steam injection, Energy, 222 (2021) 119981.
[12] E. Lekzian, H. Farshi Fasih, R. Modanlou, Aerothermodynamic off-design performance study of a fixed double bypass duct turbofan engine, The Journal of Engine Research, 70(3) (2023) 62-75.
[13] B. Liu, R. Wang, X. Yu, On the mode transition of a double bypass variable cycle compression system, Aerospace Science and Technology, 98 (2020) 105743.
[14] A. Agul’nik, I. Kravchenko, A. Gorbunov, A. Novoselova, A. Sklyarova, Influence analysis of the second bypass air bleed parameters on the engine performance, Russian Aeronautics, 61 (2018) 441-444.
[15] S. Manoharan, Innovative Double Bypass Engine for Increased Performance, Embry-Riddle Aeronautical University, 2011.
[16] S. Fu, Z. Li, W. Zhanxue, L. Zhifu, S. Jingwei, Integration of high-fidelity model of forward variable area bypass injector into zero-dimensional variable cycle engine model, Chinese Journal of Aeronautics, 34(8) (2021) 1-15.
[17] H. Chen, Q. Zheng, Y. Gao, H. Zhang, Performance seeking control of minimum infrared characteristic on double bypass variable cycle engine, Aerospace Science and Technology, 108 (2021) 106359.
[18] H. Aygun, O. Turan, Exergetic sustainability off-design analysis of variable-cycle aero-engine in various bypass modes, Energy, 195 (2020) 117008.
[19] K.H. Liew, E. Urip, S.L. Yang, Parametric Cycle Analysis of a Turbofan Engine with an Interstage Turbine Burner, Journal of Propulsion and Power, 21(3) (2005) 546-551.
[20] F. Yin, A.G. Rao, Off-design performance of an interstage turbine burner turbofan engine, Journal of Engineering for Gas Turbines and Power, 139(8) (2017) 082603.
[21] A. Pellegrini, T. Nikolaidis, V. Pachidis, S. Köhler, On the performance simulation of inter-stage turbine reheat, Applied Thermal Engineering, 113 (2017) 544-553.
[22] Y. Levy, V. Erenburg, V. Sherbaum, I. Gaissinski, Development of combustor for a hybrid turbofan engine, International Journal of Turbo & Jet-Engines, 39(4) (2022) 465-475.
[23] J.D. Mattingly, W.H. Heiser, D.T. Pratt, Aircraft Engine Design, 2nd ed., American Institute of Aeronautics & Astronautics, Reston, Virginias, 2002.
[24] S. Farokhi, Aircraft Propulsion, 2nd ed., Wiley, Kansas, USA, 2009.
[25] D. Levin, D. Parsons, D. Panteny, P. Wilson, M. Rask, F-35 STOVL Performance Requirements Verification, in: 2018 Aviation Technology, Integration, and Operations Conference.
[26] R.A. Clark, J. Tai, D. Mavris, Integrated Design of a Variable Cycle Engine and Aircraft Thermal Management System, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2023, pp. V001T001A036.
[27] O. Turan, Exergo-economic analysis of a CFM56-7B turbofan engine, Energy, 259 (2022) 124936.
[28] S.A. Cihangir, H. Aygun, O. Turan, Energy and performance analysis of a turbofan engine with the aid of dynamic component efficiencies, Energy, 260 (2022) 125085.
[29] H. Aydin, O. Turan, T.H. Karakoc, A. Midilli, Exergetic sustainability indicators as a tool in commercial aircraft: a case study for a turbofan engine, International journal of green energy, 12(1) (2015) 28-40.
[30] M. Daly, G. Bill, Jane's Aero Engines 2013/2014, Jane's Information Group, 2013.
[31] A. Ghenaiet, Analyses and Optimization of a Propulsion Cycle for Unmixed High Bypass Turbofan, in: Turbo Expo: Power for Land, Sea, and Air, 2008, pp. 473-488.
[32] D. Papamoschou, M. Debiasi, Conceptual development of quiet turbofan engines for supersonic aircraft, Journal of propulsion and power, 19(2) (2003) 161-169.
[33] Boeing, Boeing 737-800 Performance Engineers Manual, 1998.
[34] V. Sanghi, B. Lakshmanan, V. Sundararajan, Digital simulator for steady-state performance prediction of military turbofan engine, Journal of Propulsion and Power, 14(1) (1998) 74-81.
[35] Z. Ji, J. Qin, K. Cheng, H. Liu, S. Zhang, P. Dong, Performance evaluation of a turbojet engine integrated with interstage turbine burner and solid oxide fuel cell, Energy, 168 (2019) 702-711.
[36] T. Blondeel, F. Yin, A. Gangoli Rao, A Novel Engine Architecture for Low NOx Emissions, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, (2022), pp. 46-57.