[1] a. ayoobi, A. Faghih Khorasani, M.R. Tavakoli, effects of subcooled temperatures on transient pool boiling of deionized water under atmospheric pressure, AUT Journal of Mechanical Engineering, 4(1) (2020) 67-78.
[2] A. Ayoobi, A.F. Khorasani, M. Barzegar, M.H.N. Zavare, Experimental study on effects of water hardness during transient pool boiling and development of an artificial neural network, International Journal of Heat and Mass Transfer, 227 (2024) 125563.
[3] A. Ayoobi, A. Faghih Khorasani, Study of transient pool boiling of deionized water in two modes of presence and absence of a magnetic field, Journal of solid and fluid mechanics, 10(1) (2020) 209-221.
[4] A. Ayoobi, A.F. Khorasani, M. Ramezanizadeh, A. Afshari, Experimental investigation of transient pool boiling characteristics of Fe3O4 ferrofluid in comparison with deionized water, Applied Thermal Engineering, 179 (2020) 115642.
[5] A. Ayoobi, A.F. Khorasani, M.R. Tavakoli, M.R. Salimpour, Experimental study of time period of continued heating rate on pool boiling characteristics of saturated water, International Journal of Heat and Mass Transfer, 137 (2019) 318-327.
[6] S. Deb, S. Pal, D.C. Das, M. Das, A.K. Das, R. Das, Surface wettability change on TF nanocoated surfaces during pool boiling heat transfer of refrigerant R-141b, Heat and Mass Transfer, 56(12) (2020) 3273-3287.
[7] P. Naphon, C. Thongjing, Pool boiling heat transfer characteristics of refrigerant-nanoparticle mixtures, International Communications in Heat and Mass Transfer, 52 (2014) 84-89.
[8] B.D. Bock, M. Bucci, C.N. Markides, J.R. Thome, J.P. Meyer, Pool boiling of refrigerants over nanostructured and roughened tubes, International Journal of Heat and Mass Transfer, 162 (2020) 120387.
[9] M. Kim, S.J. Kim, A mechanistic model for nucleate pool boiling including effect of bubble coalescence on area fractions, International Journal of Heat and Mass Transfer, 163 (2020) 120453.
[10] R.K. Gouda, M. Pathak, M.K. Khan, Pool boiling heat transfer characteristics of a biosurfactant particle deposited heating surface, International Journal of Heat and Mass Transfer, 163 (2020) 120455.
[11] S.M.S. Murshed, K. Vereen, D. Strayer, R. Kumar, An experimental investigation of bubble nucleation of a refrigerant in pressurized boiling flows, Energy, 35(12) (2010) 5143-5150.
[12] S. Shin, G. Choi, B.S. Kim, H.H. Cho, Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid, Energy, 76 (2014) 428-435.
[13] Z. Li, A. Mazinani, T. Hayat, A.A.A.A. Al-Rashed, H. Alsulami, M. Goodarzi, M.M. Sarafraz, Transient pool boiling and particulate deposition of copper oxide nano-suspensions, International Journal of Heat and Mass Transfer, 155 (2020) 119743.
[14] G. Righetti, L. Doretti, H. Sadafi, K. Hooman, S. Mancin, Water pool boiling across low pore density aluminum foams, Heat Transfer Engineering, 41(19-20) (2020) 1673-1682.
[15] A.R. Betz, J. Jenkins, C.-J.C. Kim, D. Attinger, Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces, International Journal of Heat and Mass Transfer, 57(2) (2013) 733-741.
[16] J. Li, G. Zhu, D. Kang, W. Fu, Y. Zhao, N. Miljkovic, Endoscopic Visualization of Contact Line Dynamics during Pool Boiling on Capillary-Activated Copper Microchannels, Advanced Functional Materials, n/a(n/a) (2020) 2006249.
[17] M.R. Mata Arenales, S.K. C.S, L.-S. Kuo, P.-H. Chen, Surface roughness variation effects on copper tubes in pool boiling of water, International Journal of Heat and Mass Transfer, 151 (2020) 119399.
[18] P. Zakšek, M. Zupančič, P. Gregorčič, I. Golobič, Investigation of Nucleate Pool Boiling of Saturated Pure Liquids and Ethanol-Water Mixtures on Smooth and Laser-Textured Surfaces, Nanoscale and Microscale Thermophysical Engineering, 24(1) (2020) 29-42.
[19] R.J. Moffat, Describing uncertainties in experimental results, Experimental thermal and fluid science, 1(1) (1988) 3-17.
[20] W.M. Rohsenow, A method of correlating heat transfer data for surface boiling of liquids, Cambridge, Mass.: MIT Division of Industrial Cooporation,[1951], 1951.
[21] N. Zuber, Nucleate boiling. region of isolated bubbles and similarity with natural convection, International Journal of Heat and Mass Transfer, 6(1) (1963) 53-78.
[22] I. Sedmak, I. Urbančič, J. Štrancar, M. Mortier, I. Golobič, Submicron thermal imaging of a nucleate boiling process using fluorescence microscopy, Energy, 109 (2016) 436-445.