[1] F.L. Rashid, A.K. Hussein, E.H. Malekshah, A. Abderrahmane, K. Guedri, O. Younis, Review of Heat Transfer Analysis in Different Cavity Geometries with and without Nanofluids, Nanomaterials, 12(14) (2022) 2481.
[2] M.T. Al-Asadi, H.A. Mohammed, M.C. Wilson, Heat Transfer Characteristics of Conventional Fluids and Nanofluids in Micro-Channels with Vortex Generators: A Review, Energies, 15(3) (2022) 1245.
[3] S. Caliskan, S. Şevik, Ö. Özdilli, Heat transfer enhancement by a sinusoidal wavy plate having punched triangular vortex generators, International Journal of Thermal Sciences, 181 (2022) 107769.
[4] A.J. Modi, M.K. Rathod, Experimental investigation of heat transfer enhancement and pressure drop of fin-and-circular tube heat exchangers with modified rectangular winglet vortex generator, International Journal of Heat and Mass Transfer, 189 (2022) 122742.
[5] H. Soltanipour, F. Pourfattah, Simultaneous use of non-uniform magnetic field and porous medium for the intensification of convection heat transfer of a magnetic nanofluid inside a tube, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43 (2021) 1-19.
[6] S.M. Mousavi, M. Biglarian, A.A.R. Darzi, M. Farhadi, H.H. Afrouzi, D. Toghraie, Heat transfer enhancement of ferrofluid flow within a wavy channel by applying a non-uniform magnetic field, Journal of Thermal Analysis and Calorimetry, 139 (2020) 3331-3343.
[7] M. Ibrahim, T. Saeed, F.R. Bani, S.N. Sedeh, Y.-M. Chu, D. Toghraie, Two-phase analysis of heat transfer and entropy generation of water-based magnetite nanofluid flow in a circular microtube with twisted porous blocks under a uniform magnetic field, Powder Technology, 384 (2021) 522-541.
[8] A. Rezaei Gorjaei, F. Joda, R. Haghighi Khoshkhoo, Heat transfer and entropy generation of water–Fe 3 O 4 nanofluid under magnetic field by Euler–Lagrange method, Journal of Thermal Analysis and Calorimetry, 139 (2020) 2023-2034.
[9] A. Izadi, M. Siavashi, H. Rasam, Q. Xiong, MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling, Applied Thermal Engineering, 168 (2020) 114843.
[10] M. Bezaatpour, H. Rostamzadeh, Heat transfer enhancement of a fin-and-tube compact heat exchanger by employing magnetite ferrofluid flow and an external magnetic field, Applied Thermal Engineering, 164 (2020) 114462.
[11] H. Bian, K. Ali, S. Ahmad, H. Bashir, W. Jamshed, K. Irshad, M.K. Al Mesfer, M. Danish, S.M. El Din, Interaction of micro-fluid structure in a pressure-driven duct flow with a nearby placed current-carrying wire: A numerical investigation, Reviews on Advanced Materials Science, 62(1) (2023) 20230134.
[12] B. Sun, Y. Guo, D. Yang, H. Li, The effect of constant magnetic field on convective heat transfer of Fe3O4/water magnetic nanofluid in horizontal circular tubes, Applied Thermal Engineering, 171 (2020) 114920.
[13] H. Roshani, P. Jalili, B. Jalili, I. Ahmad, A.S. Hendy, M.R. Ali, D. Ganji, The effect of magnetic field on the heat transfer in the porous medium octagonal cavity with Cassini oval barriers, Case Studies in Thermal Engineering, 56 (2024) 104194.
[14] Z. Mehrez, A. El Cafsi, Heat exchange enhancement of ferrofluid flow into rectangular channel in the presence of a magnetic field, Applied Mathematics and Computation, 391 (2021) 125634.
[15] F. Selimefendigil, H.F. Öztop, Effects of local curvature and magnetic field on forced convection in a layered partly porous channel with area expansion, International Journal of Mechanical Sciences, 179 (2020) 105696.
[16] H. Soltanipour, Two-phase simulation of magnetic field effect on the ferrofluid forced convection in a pipe considering Brownian diffusion, thermophoresis, and magnetophoresis, The European Physical Journal Plus, 135(9) (2020) 1-23.
[17] H.Z. Demirag, M. Dogan, A.A. Igci, The numerical analysis of novel type conic vortex generator and comparison with known VGs for heat transfer enhancement, Heat and Mass Transfer, (2022) 1-28.
[18] D. Hu, Q. Zhang, K. Song, C. Gao, K. Zhang, M. Su, L. Wang, Performance optimization of a wavy finned-tube heat exchanger with staggered curved vortex generators, International Journal of Thermal Sciences, 183 (2023) 107830.
[19] L. Yang, L. Shi, X. Ding, W. Cui, G. Chang, C. Wang, G. Yue, Y. Li, Numerical analysis of the performance of proton exchange membrane fuel cell with longitudinal vortex generators, Energy Reports, 8 (2022) 9481-9492.
[20] C. Xie, G. Yan, Q. Ma, Y. Elmasry, P.K. Singh, A. Algelany, M. Wae-hayee, Flow and heat transfer optimization of a fin-tube heat exchanger with vortex generators using Response Surface Methodology and Artificial Neural Network, Case Studies in Thermal Engineering, 39 (2022) 102445.
[21] Z. Ke, C.-L. Chen, K. Li, S. Wang, C.-H. Chen, Vortex dynamics and heat transfer of longitudinal vortex generators in a rectangular channel, International Journal of Heat and Mass Transfer, 132 (2019) 871-885.
[22] Y. Amini, S. Akhavan, E. Izadpanah, A numerical investigation on the heat transfer characteristics of nanofluid flow in a three-dimensional microchannel with harmonic rotating vortex generators, Journal of Thermal Analysis and Calorimetry, 139 (2020) 755-764.
[23] A. Heydari, A. Noori, A.K. Nezhad, K. Kord, Optimized heat transfer systems: Exploring the synergy of micro pin-fins and micro Vortex generators, International Communications in Heat and Mass Transfer, 153 (2024) 107378.
[24] S. Asaadi, H. Abdi, Numerical investigation of laminar flow and heat transfer in a channel using combined nanofluids and novel longitudinal vortex generators, Journal of Thermal Analysis and Calorimetry, 145 (2021) 2795-2808.
[25] T. Lemenand, C. Habchi, D. Della Valle, H. Peerhossaini, Vorticity and convective heat transfer downstream of a vortex generator, International Journal of Thermal Sciences, 125 (2018) 342-349.
[26] Z. Li, D. Lu, Q. Cao, Y. Wang, Y. Liu, Research on the enhanced heat transfer performance of SCO2 caused by vortex generators with different geometric dimensions in novel airfoil channels, Progress in Nuclear Energy, 169 (2024) 105057.
[27] E. Tzirtzilakis, M. Xenos, Biomagnetic fluid flow in a driven cavity, Meccanica, 48 (2013) 187-200.
[28] H. Soltanipour, Numerical analysis of two-phase ferrofluid forced convection in an annulus subjected to magnetic sources, Applied Thermal Engineering, 196 (2021) 117278.
[29] R.E. Rosensweig, Heating magnetic fluid with alternating magnetic field, Journal of magnetism and magnetic materials, 252 (2002) 370-374.
[30] A. Gavili, F. Zabihi, T.D. Isfahani, J. Sabbaghzadeh, The thermal conductivity of water base ferrofluids under magnetic field, Experimental Thermal and Fluid Science, 41 (2012) 94-98.
[31] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer an International Journal, 11(2) (1998) 151-170.
[32] A. Karimi, M. Goharkhah, M. Ashjaee, M.B. Shafii, Thermal Conductivity of Fe _ 2 O _ 3 Fe 2 O 3 and Fe _ 3 O _ 4 Fe 3 O 4 Magnetic Nanofluids Under the Influence of Magnetic Field, International Journal of Thermophysics, 36 (2015) 2720-2739.
[33] L. Wang, Y. Wang, X. Yan, X. Wang, B. Feng, Investigation on viscosity of Fe3O4 nanofluid under magnetic field, International Communications in Heat and Mass Transfer, 72 (2016) 23-28.
[34] F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of heat and mass transfer, Wiley New York, 1996.
[35] L.S. Sundar, M. Naik, K. Sharma, M. Singh, T.C.S. Reddy, Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid, Experimental Thermal and Fluid Science, 37 (2012) 65-71.
[36] S.Y. Motlagh, H. Soltanipour, Natural convection of Al2O3-water nanofluid in an inclined cavity using Buongiorno's two-phase model, International Journal of Thermal Sciences, 111 (2017) 310-320.
[37] D. Pnueli, Principles of enhanced heat transfer: by RL Webb. Wiley-Interscience, New York (1994), in, Pergamon, 1995.
[38] A. Bejan, Second-law analysis in heat transfer and thermal design, in: Advances in heat transfer, Elsevier, 1982, pp. 1-58.
[39] A. Bejan, Entropy generation minimization: The new thermodynamics of finite‐size devices and finite‐time processes, Journal of Applied Physics, 79(3) (1996) 1191-1218.
[40] A. Bejan, J. Kestin, Entropy generation through heat and fluid flow, (1983).
[41] N. Hajialigol, A. Fattahi, M.H. Ahmadi, M.E. Qomi, E. Kakoli, MHD mixed convection and entropy generation in a 3-D microchannel using Al2O3–water nanofluid, Journal of the Taiwan Institute of Chemical Engineers, 46 (2015) 30-42.
[42] S.V. Patankar, Heat conduction, Numerical heat transfer and fluid flow, (2018) 41-77.
[43] M. Asfer, B. Mehta, A. Kumar, S. Khandekar, P.K. Panigrahi, Effect of magnetic field on laminar convective heat transfer characteristics of ferrofluid flowing through a circular stainless steel tube, International Journal of Heat and Fluid Flow, 59 (2016) 74-86.
[44] H. Aminfar, M. Mohammadpourfard, S.A. Zonouzi, Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field, Journal of Magnetism and Magnetic materials, 327 (2013) 31-42.
[45] M.H. Hekmat, K.K. Ziarati, Effects of nanoparticles volume fraction and magnetic field gradient on the mixed convection of a ferrofluid in the annulus between vertical concentric cylinders, Applied Thermal Engineering, 152 (2019) 844-857.
[46] G. Zhou, Q. Ye, Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators, Applied Thermal Engineering, 37 (2012) 241-248.
[47] A. Abdollahi, M. Shams, Optimization of shape and angle of attack of winglet vortex generator in a rectangular channel for heat transfer enhancement, Applied Thermal Engineering, 81 (2015) 376-387.