Numerical Simulation of the Bubble Dynamics inside an Enclosure Containing Blood under the Influence of Pressure Oscillations

Document Type : Research Article

Authors

1 CFD, Turbulence and Combustion Research Lab., Department of Mechanical Engineering, University of Qom, Iran

2 Aerospace Research Institute, Tehran, Iran *Abstract

Abstract

This study investigates the evolution of bubble shape within a square area filled with blood. The accuracy of the numerical solution is validated using Laplace's problem and the free-rising of the bubble. The analysis is conducted in two dimensions and in a transient manner. The effects of ultrasound waves are applied as a function of pressure on the boundaries of the solution domain. Results show that applying a linearly increasing pressure on the computational domain boundaries causes a reduction in bubble radius. Furthermore, it is observed that assuming the air inside the bubble behaves as an ideal gas, leads to more pronounced changes in bubble radius compared to constant density assumptions. Oscillatory pressure distributions on the external boundaries result in corresponding oscillations in bubble radius. These fluctuations in bubble size could be utilized to exert tension on the walls of blood clots, ultimately aiding in their dissolution. The most intensive bubble size fluctuations occur in the frequency of 1 (MHz). Additionally, the disproportionate changes in bubble radius with pressure variations are attributed to the hysteresis phenomenon.

Keywords

Main Subjects


[1] S. Wang, X. Guo, W. Xiu, Y. Liu, L. Ren, H. Xiao, F. Yang, Y. Gao, C. Xu, L. Wang, Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles, Science Advances, 6(31) (2020) eaaz8204.
[2] A.J. Tomkins, N. Schleicher, L. Murtha, M. Kaps, C.R. Levi, M. Nedelmann, N.J. Spratt, Platelet rich clots are resistant to lysis by thrombolytic therapy in a rat model of embolic stroke, Experimental & Translational Stroke Medicine, 7(1) (2015) 2.
[3] K. Hagisawa, T. Nishioka, R. Suzuki, K. Maruyama, B. Takase, M. Ishihara, A. Kurita, N. Yoshimoto, Y. Nishida, K. Iida, H. Luo, R.J. Siegel, Thrombus-targeted perfluorocarbon-containing liposomal bubbles for enhancement of ultrasonic thrombolysis: in vitro and in vivo study, Journal of Thrombosis and Haemostasis, 11(8) (2013) 1565-1573.
[4] S. Hendley, J. Paul, A. Maxwell, K. Haworth, C. Holland, K. Bader, Clot Degradation Under the Action of Histotripsy Bubble Activity and a Lytic Drug, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, PP (2021).
[5] S. Mashak Sh., M.K. Moayyedi, R. Kamali Moghadam, M. Najafi, Numerical simulation of bubble dynamics inside a blood vessel. The 29th annual international conference of the Iranian Mechanical Engineers Association and the 8th conference of the thermal power plants industry, 2021.
[6] R. Kamali Moghadam, M.K. Moayyedi, S. Mashak Sh., M. Najafi, Numerical simulation of the change of bubble radius inside the blood under the influence of linear pressure changes. The 30th annual international conference of the Iranian Mechanical Engineers Association, 2022. Tehran.
[7] S. Gao, Q. Zhu, M. Guo, Y. Gao, X. Dong, Z. Chen, Z. Liu, F. Xie, Ultrasound and Intra-Clot Microbubbles Enhanced Catheter-Directed Thrombolysis in Vitro and in Vivo, Ultrasound in medicine & biology, 43(8) (2017) 1671-1678.
[8] Q. Zhu, G. Dong, Z. Wang, L. Sun, S. Gao, Z. Liu, Intra-clot Microbubble-Enhanced Ultrasound Accelerates Catheter-Directed Thrombolysis for Deep Vein Thrombosis: A Clinical Study, Ultrasound in medicine & biology, 45(9) (2019) 2427-2433.
[9] J. Lux, A.M. Vezeridis, K. Hoyt, S.R. Adams, A.M. Armstrong, S.R. Sirsi, R.F. Mattrey, Thrombin-Activatable Microbubbles as Potential Ultrasound Contrast Agents for the Detection of Acute Thrombosis, ACS Appl Mater Interfaces, 9(43) (2017) 37587-37596.
[10] M. de Saint Victor, L.C. Barnsley, D. Carugo, J. Owen, C.C. Coussios, E. Stride, Sonothrombolysis with Magnetically Targeted Microbubbles, Ultrasound in medicine & biology, 45(5) (2019) 1151-1163.
[11] J. Kim, R.M. DeRuiter, L. Goel, Z. Xu, X. Jiang, P.A. Dayton, A Comparison of Sonothrombolysis in Aged Clots between Low-Boiling-Point Phase-Change Nanodroplets and Microbubbles of the Same Composition, Ultrasound in medicine & biology, 46(11) (2020) 3059-3068.
[12] B. Petit, E. Gaud, D. Colevret, M. Arditi, F. Yan, F. Tranquart, E. Allémann, In Vitro Sonothrombolysis of Human Blood Clots with BR38 Microbubbles, Ultrasound in medicine & biology, 38 (2012) 1222-1233.
[13] Y. Zhou, V.K. Sharma, K.S. Murugappan, A. Ahmad, Clot dissolution is better with ultrasound assisted thrombolysis for fresh clots with higher cholesterol content, AIP Conference Proceedings, 1503(1) (2012) 227-232.
[14] C. Acconcia, B.Y.C. Leung, A. Manjunath, D.E. Goertz, Interactions between Individual Ultrasound-Stimulated Microbubbles and Fibrin Clots, Ultrasound in Medicine and Biology, 40(9) (2014) 2134-2150.
[15] J.J. Pacella, J. Brands, F.G. Schnatz, J.J. Black, X. Chen, F.S. Villanueva, Treatment of Microvascular Micro-embolization Using Microbubbles and Long-Tone-Burst Ultrasound: An inVivo Study, Ultrasound in Medicine and Biology, 41(2) (2015) 456-464.
[16] S.A.N. Doelare, D.M. Jean Pierre, J.H. Nederhoed, S.P.M. Smorenburg, R.J. Lely, V. Jongkind, A.W.J. Hoksbergen, H.P. Ebben, K.K. Yeung, W. Wisselink, B.B. van der Meijs, M.R. Meijerink, A.M. Wiersema, J. Kievit, R.J.P. Musters, J.D. Blankensteijn, O. Kamp, J. Slikkerveer, Microbubbles and Ultrasound Accelerated Thrombolysis for Peripheral Arterial Occlusions: The Outcomes of a Single Arm Phase II Trial, European Journal of Vascular and Endovascular Surgery, 62(3) (2021) 463-468.
[17] B. Petit, F. Yan, P. Bussat, Y. Bohren, E. Gaud, P. Fontana, F. Tranquart, E. Allémann, Fibrin degradation during sonothrombolysis – Effect of ultrasound, microbubbles and tissue plasminogen activator, Journal of Drug Delivery Science and Technology, 25 (2015) 29-35.
[18] Y. Zhu, L. Guan, Y. Mu, Combined Low-Frequency Ultrasound and Urokinase-Containing Microbubbles in Treatment of Femoral Artery Thrombosis in a Rabbit Model, PLOS ONE, 11(12) (2016) e0168909.
[19] F. Xie, J. Lof, C. Everbach, A. He, R.M. Bennett, T. Matsunaga, J. Johanning, T.R. Porter, Treatment of Acute Intravascular Thrombi With Diagnostic Ultrasound and Intravenous Microbubbles, JACC: Cardiovascular Imaging, 2(4) (2009) 511-518.
[20] F. Wang, L. Dong, S. Liang, X. Wei, Y. Wang, L. Chang, K. Guo, H. Wu, Y. Chang, Y. Yin, L. Wang, Y. Shi, F. Yan, N. Li, Ultrasound-triggered drug delivery for glioma therapy through gambogic acid-loaded nanobubble-microbubble complexes, Biomedicine & Pharmacotherapy, 150 (2022) 113042.
[21] B. Zhang, H. Wu, H. Kim, P. Welch, A. Cornett, G. Stocker, R. Nogueira, J. Kim, G. Owens, P. Dayton, Z. Xu, C. Shi, X. Jiang, A Model of High-Speed Endovascular Sonothrombolysis with Vortex Ultrasound-Induced Shear Stress to Treat Cerebral Venous Sinus Thrombosis, Research, 6 (2023).
[22] V. Ostasevicius, A. Paulauskaite-Taraseviciene, V. Lesauskaite, V. Jurenas, V. Tatarunas, E. Stankevicius, A. Tunaityte, M. Venslauskas, L. Kizauskiene, Prediction of changes in blood parameters induced by low-frequency ultrasound, Applied System Innovation, 6(6) (2023) 99.
[23] Y. Cui, X. Zheng, S. Wang, J. Zhou, G. Yue, P. Peng, Q. Li, J. Li, Y. Li, J. Luo, Evaluation on safety and efficacy of ultrasound assisted thrombolysis in a sheep artificial heart pump, Biocybernetics and Biomedical Engineering, 44(2) (2024) 277-285.
[24] Z.Q. Tan, E.H. Ooi, Y.S. Chiew, J.J. Foo, Y.K. Ng, E.T. Ooi, Modelling the dynamics of microbubble undergoing stable and inertial cavitation: Delineating the effects of ultrasound and microbubble parameters on sonothrombolysis, Biocybernetics and Biomedical Engineering, 44(2) (2024) 358-368.
[25] Ghaderi, A., M. Keihani, and M. Nazari, Simulating the process of bubble ascent under electric field using the Boltzmann network method. Mechanical Engineering, Tabriz University, 2019.
[26] S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, L. Tobiska, Quantitative benchmark computations of two-dimensional bubble dynamics, International Journal for Numerical Methods in Fluids, 60(11) (2009) 1259-1288.
[27] S. Anna, N. Alvarez, L. Walker, A Microtensiometer To Probe the Effect of Radius of Curvature on Surfactant Transport to a Spherical Interface, Langmuir : the ACS journal of surfaces and colloids, 26 (2010) 13310-13319.
[28] V. Chandran Suja, J.M. Frostad, G.G. Fuller, Impact of Compressibility on the Control of Bubble-Pressure Tensiometers, Langmuir : the ACS journal of surfaces and colloids, 32(46) (2016) 12031-12038.