[1] X. Li, H. Zhou, L. Su, Y. Chen, Z. Qiao, F. Liu, Combustion and emission characteristics of a lateral swirl combustion system for DI diesel engines under low excess air ratio conditions, Fuel, 184 (2016) 672-680.
[2] R. Payri, J.P. Viera, V. Gopalakrishnan, P.G. Szymkowicz, The effect of nozzle geometry over internal flow and spray formation for three different fuels, Fuel, 183 (2016) 20-33.
[3] L. Su, X. Li, Z. Zhang, F. Liu, Numerical analysis on the combustion and emission characteristics of forced swirl combustion system for DI diesel engines, Energy conversion and management, 86 (2014) 20-27.
[4] H. Mohammadi, P. Jabbarzadeh, M. Jabbarzadeh, M.T. Shrevani-Tabar, Numerical investigation on the hydrodynamics of the internal flow and spray behavior of diesel fuel in a conical nozzle orifice with the spiral rifling like guides, Fuel, 196 (2017) 419-430.
[5] C. Tang, Z. Feng, C. Zhan, Z. Huang, Experimental study on the effect of injector nozzle K factor on the spray characteristics in a constant volume chamber: Near nozzle spray initiation, the macroscopic and the droplet statistics, Fuel, 202 (2017) 583-594.
[6] Y. Sun, Z. Guan, K. Hooman, Cavitation in diesel fuel injector nozzles and its influence on atomization and spray, Chemical engineering & technology, 42(1) (2019) 6-29.
[7] H. Hiroyasu, Spray breakup mechanism from the hole-type nozzle and its applications, Atomization and sprays, 10(3-5) (2000).
[8] Z. He, H. Zhou, L. Duan, M. Xu, Z. Chen, T. Cao, Effects of nozzle geometries and needle lift on steadier string cavitation and larger spray angle in common rail diesel injector, International Journal of Engine Research, 22(8) (2021) 2673-2688.
[9] B. Biçer, A. Sou, Application of the improved cavitation model to turbulent cavitating flow in fuel injector nozzle, Applied Mathematical Modelling, 40(7-8) (2016) 4712-4726.
[10] Z. He, Y. Chen, X. Leng, Q. Wang, G. Guo, Experimental visualization and LES investigations on cloud cavitation shedding in a rectangular nozzle orifice, International Communications in Heat and Mass Transfer, 76 (2016) 108-116.
[11] F. Salvador, M. Carreres, D. Jaramillo, J. Martínez-López, Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics, Energy conversion and management, 103 (2015) 284-299.
[12] Q. Li, C. Zong, F. Liu, T. Xue, A. Zhang, X. Song, Numerical and experimental analysis of the cavitation characteristics of orifice plates under high-pressure conditions based on a modified cavitation model, International Journal of Heat and Mass Transfer, 203 (2023) 123782.
[13] J. Cui, H. Lai, J. Li, Y. Ma, Visualization of internal flow and the effect of orifice geometry on the characteristics of spray and flow field in pressure-swirl atomizers, Applied Thermal Engineering, 127 (2017) 812-822.
[14] F.J. Salvador, J.J. López, J. De La Morena, M. Crialesi-Esposito, Experimental investigation of the effect of orifices inclination angle in multihole diesel injector nozzles. Part 1–Hydraulic performance, Fuel, 213 (2018) 207-214.
[15] R. Payri, F.J. Salvador, J. De La Morena, V. Pagano, Experimental investigation of the effect of orifices inclination angle in multihole diesel injector nozzles. Part 2–Spray characteristics, Fuel, 213 (2018) 215-221.
[16] J. Liu, Z. Liu, J. Wu, Z. Li, P. Chen, X. Gu, Visualization experiment and numerical calculation of the cavitation evolution inside the injector ball valve, Fuel, 329 (2022) 125500.
[17] Z.-Y. Sun, G.-X. Li, C. Chen, Y.-S. Yu, G.-X. Gao, Numerical investigation on effects of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle for a high-pressure common-rail DI diesel engine, Energy Conversion and Management, 89 (2015) 843-861.
[18] Z. Feng, C. Zhan, C. Tang, K. Yang, Z. Huang, Experimental investigation on spray and atomization characteristics of diesel/gasoline/ethanol blends in high pressure common rail injection system, Energy, 112 (2016) 549-561.
[19] L. Guan, C. Tang, K. Yang, J. Mo, Z. Huang, Effect of di-n-butyl ether blending with soybean-biodiesel on spray and atomization characteristics in a common-rail fuel injection system, Fuel, 140 (2015) 116-125.
[20] Y. Dai, X. Zhang, G. Zhang, M. Cai, C. Zhou, Z. Ni, Numerical analysis of influence of cavitation characteristics in nozzle holes of curved diesel engines, Flow Measurement and Instrumentation, 85 (2022) 102172.
[21] M.T. Shervani-Tabar, S. Parsa, M. Ghorbani, Numerical study on the effect of the cavitation phenomenon on the characteristics of fuel spray, Mathematical and Computer Modelling, 56(5-6) (2012) 105-117.
[22] B. Jalili, P. Jalili, Numerical analysis of airflow turbulence intensity effect on liquid jet trajectory and breakup in two-phase cross flow, Alexandria Engineering Journal, 68 (2023) 577-585.
[23] A. Sou, S. Minami, R. Prasetya, R. Pratama, S. Moon, Y. Wada, H. Yokohata, X-ray visualization of cavitation in nozzles with various sizes, ICLASS-15, (2015).
[24] Z. He, Z. Zhang, G. Guo, Q. Wang, X. Leng, S. Sun, Visual experiment of transient cavitating flow characteristics in the real-size diesel injector nozzle, International Communications in Heat and Mass Transfer, 78 (2016) 13-20.
[25] T. Hayashi, M. Suzuki, M. Ikemoto, Visualization of internal flow and spray formation with real size diesel nozzle, in: 12th triennial international conference on liquid atomization and spray systems, ICLASS, 2012, pp. 2-6.
[26] M. Ghiji, L. Goldsworthy, P.A. Brandner, V. Garaniya, P. Hield, Analysis of diesel spray dynamics using a compressible Eulerian/VOF/LES model and microscopic shadowgraphy, Fuel, 188 (2017) 352-366.
[27] Y. Wei, H. Zhang, L. Fan, B. Li, X. Leng, Z. He, Experimental study on influence of pressure fluctuation and cavitation characteristics of nozzle internal flow on near field spray, Fuel, 337 (2023) 126843.
[28] H. Ding, Z. Wang, Y. Li, H. Xu, C. Zuo, Initial dynamic development of fuel spray analyzed by ultra high speed imaging, Fuel, 169 (2016) 99-110.
[29] J.M. Desantes, R. Payri, F.J. Salvador, A. Gil, Development and validation of a theoretical model for diesel spray penetration, Fuel, 85(7-8) (2006) 910-917.
[30] A. Sou, S. Hosokawa, A. Tomiyama, Effects of cavitation in a nozzle on liquid jet atomization, International journal of heat and mass transfer, 50(17-18) (2007) 3575-3582.